968 resultados para Psicologia evolutiva de 3 a 6 anys
Resumo:
青杨(Populus cathayana Rehd.)是青杨派杨树的主要树种之一,为我国特有乡土树种,其主要分布区之一是我国的青藏高原,集中分布地带在甘肃省中部及青海省东部,四川省西北部岷江上游和松潘等地区。本研究以青藏高原东缘青杨天然分布区的6个群体143个个体为材料,用AFLP、SSR和叶绿体SSR分子标记分析青杨天然群体的遗传多样性,分析其遗传结构和分化,比较6个群体间遗传多样性的高低和群体间的遗传关系。旨在为青杨基因资源评价、保护与保存、遗传改良策略制定等提供科学理论依据。通过以上研究,得出如下主要研究结果: 1 AFLP分子标记研究结果 采用4对选择性引物对6个青杨天然群体143个个体进行分析,扩增谱带分析共检测到175个位点,其中173个位点表现为多态,多态位点百分率高达98.9%。从整体上表现出较高的遗传多样性,Nei’s基因多样度(h)水平为0.306。从青杨天然群体位点分布来看,有高达20%的位点(32位点)为群体所特有,仅有9.14%的位点(16位点)在所有群体中存在。群体间的遗传分化极大,所有遗传变异中,有48.9%的遗传变异存在于群体间。在个体群丛(Individuals cluster)和主坐标(PCO analysis)分析中,青杨各群体未呈现任何地理模式,Mantel检测也显示各群体间遗传距离与地理距离无明显相关。研究认为,由于地理和空间上大尺度的隔离和地形地貌复杂使得群体间无法进行基因交流,导致群体间遗传分化极大,另外各群体在不同的选择压力下,经历各自独立的进化历程,这些都可能导致群体间遗传距离与地理距离的不相关。 2 SSR分子标记研究结果 在SSR分析中,7个位点在6个青杨天然群体143个个体中共检测到79个等位基因,每位点检测到的等位基因数在5-16之间,平均11.3个,总体上多态位点百分率达100%。平均观察杂合度和期望杂合度分别为0.792和0.802。Hardy-Weinberg平衡检验表明青杨大部分群体都处于非平衡状态,群体大部分位点都是偏离哈迪-温伯格平衡(76.3%),只有23.7%的测验满足哈迪-温伯格平衡。分析青杨天然群体内和群体间的遗传变异,基因分化系数(GST)为0.373,即有62.7%的遗传变异存在群体内,37.3%的遗传变异存在群体间。群体内的遗传变异高于群体间水平。根据各群体遗传距离UPGMA聚类分析,有来自相临分布区、近似气候类型的群体聚在一起的趋势,但Mantel检测反映遗传距离与地理距离间并无明显相关性。 3 cpSSR分子标记研究结果 分析来自青藏高原东缘6个青杨天然群体,所用cpSSR引物中有5对cpSSR引物(CCMP2、CCMP5、SCUO01、SCU03、SCU07)都表现较高的多态性,单个引物检测的片段数都在4以上。5对cpSSR引物共检测片段数26个,组成了12种叶绿体DNA单倍型。各群体的单倍型分布和频率有较大差异,群体单倍型多样性范围为0-0.4926,TS、JZ、PW和SHY群体单倍型多样性高于QHY和LED群体水平。本研究发现,分布在青藏高原东缘的青杨天然群体,群体间不存在共享的单倍型,各群体间存在极大的遗传分化(GST=0.9223)。从青藏高原东缘地区经历的地质历史事件来看,第四纪的冰期气候变迁可能是造成青杨现今遗传结构模式的主要因素之一。根据单倍型在各群体的分布情况,进行青杨群体聚类分析结果,各群体无明显的分组现象,青杨各群体也未呈现任何清晰地理模式。 由于不同分子标记在对群体遗传多样性检测能力与效率上存在差异,所以三种标记检测的青藏高原东缘青杨天然群体遗传多性水平也不尽一致,但在与用同种方法检测其它物种或同一物种不同种源群体比较,三种分子标记方法都揭示了青藏高原东缘青杨天然群体具有中等偏上的遗传多样性水平。结果分析表明,群体间遗传分化极大,这是由于青杨天然群体分布于青藏高原东缘,既有高原又有高山峡谷,由于地理和空间上大尺度的隔离和地形地貌复杂导致了基因流物理上的阻隔。三种分子标记研究结果经Mantel分析检测,遗传距离与地理距离之间都无明显相关性。较为一致的解释是,青杨分布区域地理和空间上大尺度的隔离和和地形地貌复杂导致群体之间不存在均匀扩散现象,另外各群体在不同的选择压力下,经历各自独立的进化历程,这些都可能导致群体间遗传距离与地理距离的不相关。 The wide geographical and climatic distribution of P. cathayana Rehd. indicates that there is a large amount of genetic diversity available, which can be exploited for conservation, breeding programs and afforestation schemes. The results are as follows: 1 Research results of AFLP genetic diversity In present study, genetic diversity was evaluated in the natural populations of P. cathayana originating from southern and eastern edge of the Qinghai-Tibetan Plateau of China by means of AFLP markers. For four primer combinations, a total of 175 bands were obtained, of which 173 (98.9%) were polymorphic. Six natural populations of P. cathayana possessed different levels of genetic diversity, high level of genetic differentiation existed among populations (GST=0.489) of P. cathayana. Individuals cluster and PCO analysis based on Jaccard’s similarity coefficient also showed evident population genetic structure with high level population genetic differentiation. The long evolutionary process coupled with genetic drift within populations, rather than contemporary gene flow, are the major forces shaping genetic structure of P. cathayana populations. Moreover, there is no correspondence between geographical and genetic distances in the populations of P. cathayana, seldom gene exchange among populations and different selection pressures may be the causes. Our finding of different levels of genetic diversity within population and high level of genetic differentiation among populations provided promising condition for further breeding or conservation programs. 2 Research results of SSR genetic diversity In this study, the genetic diversity of P. cathayana was investigated using microsatellite markers. In a total of 150 individuals collected from six natural populations in the southeastern part of the Qinghai-Tibetan Plateau in China, a high level of microsatellite polymorphism was detected. At the seven investigated microsatellite loci, the number of alleles per locus ranged from 5 to 16, with a mean of 11.3, the observed heterozygosities across populations ranged from 0.408 to 0.986, with a mean of 0.792, and the expected heterozygosities across populations ranged from 0.511 to 0.891, with a mean of 0.802. The proportion of genetic differentiation among populations accounted for 37.3% of the whole genetic diversity. The presence of such a high level of genetic diversity could be attributed to the features of the species and the habitats where the sampled populations occur: The southeastern part of the Qinghai-Tibetan Plateau is regarded as the natural distribution and variation center of the genus Populus in China. Variation in environmental conditions and selection pressures in different populations, and topographic dispersal barriers could be factors associated with the high level of genetic differentiation found among populations. The populations possessed significant heterozygosity excesses, which may be due to extensive population mixing at the local scale. The cluster analysis showed that the populations are not strictly grouped according to their geographic distances but the habitat characteristics also influence the divergence pattern. In addition, we suggest that population SHY should be regarded as an ecologically divergent species of P. cathayana. 3 Research results of cpSSR genetic diversity Genetic diversity of six natural populations of P. cathayana originating from the southeastern part of the Qinghai-Tibetan Plateau in China was studied by use of cpSSR markers. Based on 5 pairs of polymorphic primers screened from 12 pairs of primers, twenty-six different length fragments and twelve different kinds of haplotypes were reduced in 143 samples. There were significant variant haplotypes among the populations.There were no shared haplotypes found among populations, analysis of molecular variance indicated that a high proportion of the total genetic variance was attributable to variations among populations (92.23%). The pattern of genetic structure which is associated with spatial separation, variation in environmental conditions and selection pressures in different populations, is also the result of geological historical factor. A molecular phylogenetic tree based on the 12 haplotypes showed that the populations are not strictly grouped according to their geographic distances.
Resumo:
西南地区在我国的经济发展和生态环境建设中占重要地位,但也是我国生态环境最脆弱的地区之一,生态系统退化,生态功能减弱,严重制约着西南林业的可持续经营与发展。本项目采用DNA 分子标记SSR 研究不同生境条件下粗枝云杉群体的遗传变异及其时空分布格局,考察遗传变异与复杂的山地生态环境间的潜在联系,系统地揭示粗枝云杉天然群体与环境系统相互作用的生态适应与分子进化机制。粗枝云杉适应性强,生长迅速,在植树造林和工业用材方面占有重要地位,研究成果可为中国西南部亚高山天然林的可持续经营及退化生态系统的恢复与重建提供理论依据和科学指导。主要研究结果如下: 1. SSR 位点变异丰富,等位基因频率的分布格局多样。7 个SSR 标记全是多态位点,每位点的等位基因数变化范围为13~24,平均为19.9 个。SSR 位点的等位基因片段长度范围变化较大。73.1%的等位基因变异遵循逐步突变模型(SSM)而发生1 个重复基元的变化,22.3%和4.6%的变异分别按两阶段突变模型(TMP)发生1 个重复基元以上的变化和在SSR 位点侧翼区发生1 个碱基变化的插入-删除事件。 2. 粗枝云杉拥有中等偏高水平的遗传多样性和相对大的群体间遗传分化。通过分析代表10 个群体的250 个个体在7 个SSR位点的变化,调查了源自中国西南山区的粗枝云杉的微卫星变异。相当高的遗传多样性和强烈的群体分化发生在粗枝云杉中, 其群体平均Nei's 期望杂合度为0.707 , 群体间遗传距离为0.121~0.224(FST)和0.100~0.537(RST)。然而,群体间遗传距离与地理距离之间无相关性,从而排除了简单的距离分离模式并暗示迁移不是影响粗枝云杉遗传变异格局的主要因素。事实上,使用私有等位基因估算的基因流数量非常低,仅等于0.753。等位基因置换检验(Allele permutation tests)揭示逐步突变及遗传漂变都对群体间分化有贡献。另外,在多数位点检测到显著的群体间遗传差异,这个结果说明自然选择,假设通过环境压力,是引起粗枝云杉微地理分化的主要因素之一。根据SSR基因型,250 个粗枝云杉个体的70%被正确地归类入其各自的来源群体,结果表明微卫星(SSR)对区分来自中国不同生态地理位点的粗枝云杉基因型是有效的。 3. 在SSR、RAPD 和AFLP 位点,显著的群体间遗传结构被发现的,但三种标记间遗传分化程度和群体遗传关系有差异。利用来自10 个群体的247 个个体,我们报告了关于样本粗枝云杉群体间遗传关系的总体看法。根据各自对评价遗传关系的信息能力和适用性,SSR、RAPD 和AFLP 标记被选用,三种技术非常有效地区别这些基因型。使用的SSR、RAPD 和AFLP 标记分别估计平均Dice 相似性系数。Mantel 检验产生显著但相对低的共表型适合度(RAPD = 0.63£AFLP = 0.60和SSR = 0.75)。比较三种标记系统,RAPD 和AFLP 共表型指数相对高地相关(r =0.59),而RAPD 和SSR 及SSR 和AFLP 之间的相关系数分别是0.53 和0.35。所有系统树,包括不同标记资料结合获得的系统树,反映了多数群体依据它们的地理条件而成某种特定关系。结果暗示单个或结合标记系统能用来深入洞察粗枝云杉遗传研究,并且不同标记系统合并资料能提供更可靠的信息。 Southwestern region plays an important role in economic developmentand ecological construction in China. Yet, it is also one of the weak regionsof ecological environment in China with degraded ecosystem and imperfectfunction, which restricts the sustaining management and development ofsouthwestern forestry. The genetic variation and spatial distribution patternof P. asperata populations originating from different habitats wereinvestigated using SSR molecular markers in this study. The correlationsbetween genetic variation and ecological and environmental conditionswere detected, and the interaction between P. asperata populations andenvironmental system and the mechanism of ecological adaption -molecular evolution were revealed. Given the significant ecological andeconomic roles of the fast-growing and wide-adaptive species in reforestation and production of pulp wood and timber, the study couldprovide a strong theoretical evidence and scientific direction for thesustaining management of subalpine natural forest, and the afforestationand rehabilitation of degraded ecosystem. The results are as follows: 1. The genetic variation at SSR loci was abundant and the distributionof allelic frequencies was uneven. All seven loci were polymorphic, and thenumber of alleles per locus varied from 13 to 24 with a mean valueequaling 19.9. The allele sizes at SSR loci were found to vary widely.73.1% of allelic variation followed stepwise mutation model (SSM) whichresults increase or decrease by one repeat type, and 22.3% and 4.6% wereresulted from two-phase mutation model (TMP) with allele size varying bymore than one repeat type and from insertion-deletion events in theflanking regions at SSR loci with a single basepair changing, respectively. 2. P. asperata possessed a moderate to high level of genetic diversityand considerable genetic differentiation. Microsatellite variation of P.asperata. originating from the mountains of southwestern China wasinvestigated by analyzing variation at seven SSR loci in 250 individualsrepresenting ten populations. A fair degree of genetic diversity and strongpopulation subdivision occurred with the mean gene diversity (H) of 0.707,and genetic distances among populations varying between 0.121 and 0.224(FST) and between 0.100 and 0.537 (RST). However, inter-populationgenetic distances showed no correlation with geographic distances between the population sites. This ruled out a simple isolation by distance modeland suggested that migration does not have a great impact. In fact, theamount of gene flow, detected using private alleles, was very low, equalingonly 0.753. Allele permutation tests revealed that stepwise-like mutations,coupled with genetic drift, could contribute to population differentiation.Moreover, significant genetic differences between populations weredetected at most loci. The results indicate that natural selection, presumablythrough environmental stress, may be one of the main factors causingmicro-geographical differentiation in the genetic structure of P. asperata.Based on SSR genotypes, 70% of the 250 individuals were correctlyclassified into their sites of origin. This suggests that microsatellites (SSRs) are effective in distinguishing genotypes of P. asperata originating fromdiverse eco-geographical sites in China. 3. Using a set of 247 individuals from ten P. asperata populations wereport an overview on the genetic relationship among the sampled P.asperata populations. RAPD, AFLP and SSR were used in terms of theirinformativeness and applicability for evaluate relationship and all threetechniques discriminated the genotypes very effectively. Mean Dicesimilarities coefficient were estimated using RAPD, AFLP and SSR,respectively. The Mantel test resulted in a significant but relatively low fit(RAPD = 0.63, AFLP = 0.60 and SSR = 0.75) of cophenetic values.Comparing the three marker systems to each other, RAPD and AFLP cophenetic indices were highly correlated (r = 0.59), while correlationcoefficient between RAPD and SSR was r = 0.53 and between SSR andAFLP was r = 0.35. For all markers a relatively high similarity indendrogram topologies was obtained although some differences wereobserved. All the dendrograms, including that obtained by the combineduse of all the marker data, reflect some relationships for most of thepopulations according to their geographic conditions. The results indicatethat single or combined marker system could be used to insight into geneticstudy in P. asperata and the combined data of different marker systems canprovide more reliable information.
Resumo:
中国沙棘是一种雌雄异株、风媒传粉的灌木或乔木,在中国西南的卧龙自然保护区有广泛的分布。本研究以采集于四川卧龙自然保护区5 个海拔(1800 m、2200 m、2600 m、3000 m、3400 m)梯度的中国沙棘天然群体为材料,以ISSR 和AFLP 标记技术研究其遗传多样性水平及其遗传结构,旨在了解卧龙地区中国沙棘天然群体的遗传多样性水平以及遗传多样性在群体间、群体内以及雌雄亚群体间的分布和特征,为中国沙棘树种的遗传改良及种质资源保存提供遗传研究背景与实验依据。同时探讨ISSR、AFLP 和RAPD三种标记对中国沙棘天然群体的遗传变异水平和群体间遗传结构的评估能力和各自的优缺点。研究得出以下主要结论: 1. ISSR和AFLP分析都表明卧龙自然保护区的中国沙棘群体拥有较高的遗传变异水平(h = 0.249,HT = 0.305)。出现这种结果的主要原因可能与卧龙自然保护区多变的气候条件和生境的异质度大有关。 2. ISSR 和AFLP 都揭示出卧龙自然保护区中国沙棘群体的遗传多样性随着海拔的增加发生显著的变化,表现为中海拔群体(2200 m 和2600 m)比高海拔群体(3000 m 和3400 m)和低海拔群体(1800 m)有更高的遗传多样性的趋势。出现这种趋势的可能解释是低海拔群体处在相对高温和相对干旱的环境,高海拔群体受到低温和紫外线胁迫,而中海拔群体存在中国沙棘生长的适宜环境。 3. ISSR 和AFLP 分析都表明:卧龙自然保护区中国沙棘的遗传结构遵循分布范围广、交配系统以异交为主的木本植物的通常模式,即大多数的遗传变异存在于群体内,只有少部分的遗传变异存在于群体间。 4. 经Mantel 检测表明,卧龙自然保护区中国沙棘群体间的海拔距离和对应遗传距离之间存在显著的正相关关系,即随着垂直海拔距离的增加,群体间的遗传距离也随之增加。Mantel 检测结果以及聚类分析将卧龙自然保护区5 个不同海拔的中国沙棘群体分为低、中、高海拔群体三组的研究结果都表明,海拔很可能是限制群体间基因交流的主要因素。 5. ISSR 分析发现同一海拔的雌雄亚群体首先聚类的研究结果表明,同一海拔的雌雄亚群体在遗传上最相似。方差分析结果表明只有3.8%的总遗传变异存在于雌雄亚群体间,这可能与雌雄植株间的交配和遗传物质的混合有关。 6. ISSR、AFLP 和RAPD 分析都表明卧龙自然保护区不同海拔的中国沙棘天然群体的遗传多样性水平较高。它们的分析结果估算得到的Nei's 平均基因多样度(h)分别为0.249、0.214 和0.170。从该结果可以看出ISSR 和AFLP 比RAPD 检测到更多的遗传多态性,这很可能是不同标记检测的基因组的位点不同所致。 7. 依据对不同标记系统的比较分析,认为ISSR、AFLP 和RAPD 三种分子标记系统都能成功地用于调查卧龙自然保护区不同海拔的中国沙棘群体的遗传变异水平及遗传变异结构,提供关于中国沙棘天然群体多态性水平和遗传变异分布的有用信息。在三者中,AFLP 具有最高效能指数和标记指数,在确定种间分类关系或鉴别个体方面是一种比较理想的标记。 Hippophae rhamnoides subsp. sinensis, a dioecious and deciduous shrub species,occupies a wide range of habitats in the Wolong Nature Reserve, Southwest China. Ourpresent study investigated the pattern of genetic variation and differentiation among fivenatural populations of H. rhamnoides subsp. sinensis, occurring along an altitudinal gradientthat varied from 1,800 to 3,400 m above sea level in the Wolong Natural Reserve, by usingISSR and AFLP markers to guide its genetic improvement and germplasm conservation. And,comparative study of ISSR, AFLP and RAPD was performed to detect their capacity toestimating the level and pattern of genetic variation occurring among the five elevationpopulations of H. rhamnoides subsp. sinensis, and to discuss their application to the study onplant genetics. The results were list following: 1. The ISSR and AFLP analysis conducted for the H. rhamnoides subsp. sinensispopulations located in the Wolong Natural Reserve of China revealed the presence of highlevels of genetic variation (h = 0.249, HT = 0.305). Besides such features as relatively widedistribution, dominantly outcrossing mating system, and effective seed dispersal by small animals and birds, it is sometimes argued that hard climatic conditions and heterogeneous habitats may also contribute to high levels of diversity. 2. Genetic diversity of H. rhamnoides subsp. sinensis populations was found to varysignificantly with changing elevation, showing a trend that mid-elevation populations (2,200m and 2,600 m) were genetically more diverse than both low-elevation (1,800 m) andhigh-elevation populations (3,000 m and 3,400 m). H. rhamnoides subsp. sinensis is thoughtto be stressed by drought and high temperature at low elevations, and by low temperature athigh elevations. The high genetic variability present in the mid-elevation populations of H.rhamnoides subsp. sinensis is assumed to be related to a greater plant density in the middlealtitudinal zone, where favorable ecological conditions permit its continuous distributioncovering the zone from 2,200 m to 2,600 m above sea level. 3. The genetic structure of H. rhamnoides subsp. sinensis revealed by ISSRs andAFLPs followed the general pattern detected in woody species with widespread distributionsand outcrossing mating systems. Such plants possess more genetic diversity withinpopulations and less variation among populations than species with other combinations oftraits. 4. In the present study, Mantel tests showed positive correlations between altitudinaldistances and genetic distances among populations or subpopulations. The observedrelationship between altitude and genetic distances, and the result of the cluster analysisincluding populations or male subpopulations and classifying the groups into three altitudeclusters suggest that altitude is a major factor that restricts gene flow between populationsand subpopulations. 5. The analysis of molecular variance showed that only 3.8% of the variability residedbetween female and male subpopulations. Such a very restricted proportion of the totalmolecular variance between female and male subpopulations is due to common sexuality andmixing of genetic material between females and males. 6. The analysis based on ISSRs, AFLPs and RAPDs all revealed relatively high levelsof genetic variation among different altitudinal populations of H. rhamnoides subsp. sinensisin Wolong Natural Reserve of China. Their estimates of mean Nei’s gene diversity is equal to0.249, 0.214 and 0.170 respectively, suggesting the higher capacity of detecting geneticvariation of ISSR and AFLP than RAPD. It might be ascribed to their distinct sensitivity todifferent type of genetic variation. 7. Based on the coparative study on ISSR, AFLP and RAPD, we drew a conclusion thatthey all successfully reveal some useful information concerning the level and pattern ofgenetic vatiation occurring among different elevation populations of H. rhamnoides subsp.sinensis. AFLP is a ideal tool to taxonomic study and individual identification for theirhighest efficiency index and marker index among the three marker systems.
Resumo:
瑞香狼毒(Stellera chamaejasme L.)是瑞香科(Thymelaeaceae)狼毒属的一种多年生野草,有毒。据调查,从20 世纪60 年代开始至今,狼毒在青藏高原东缘的高寒草甸上不断蔓延、密度不断变大,在一些地段甚至成为优势物种。有关狼毒在高寒草甸蔓延的生态系统效应的研究尚未见报道。本文从系统碳、氮循环的角度,分别研究狼毒在生长和非生长季节对高寒草甸生态系统的影响。同时,从花粉化感的角度,深入研究狼毒对当地同花期物种有性繁殖的影响。系统地研究高寒草甸生态系统物质循环过程,特别是非生长季节微生物和土壤碳氮库的动态变化,有助于揭示狼毒在系统物质循环方面的“物种效应”以及这种效应的季节变化,为丰富有关高海拔生态系统,特别是其非生长季的物质循环的科学理论做出贡献。同时,碳氮循环和花粉化感的研究还有助于深刻地理解狼毒作为一种入侵性很强的杂草的特殊的蔓延机制,从而为狼毒的有效防治、高寒草甸的科学管理提供依据。 针对狼毒在青藏高原高寒草甸上蔓延的生态系统碳氮循环方面的影响,开展以下2 方面的研究:(1)在生长季,研究松潘县尕米寺附近(北纬32°53',东经103°40',海拔3190 m)的两种地形(平地和阳坡)条件下狼毒对土壤碳氮循环影响及可能的原因。狼毒和其它几个主要物种(圆穗蓼(Polygonummacrophyllum D. Don var. Macrophyllum),草地早熟禾(Poa pretensis L.),四川嵩草(Kobresia setchwanensis Hand.-Maizz.),鹅绒委陵菜(Potentilla anserina L.var. anserine)和鳞叶龙胆(Gentiana squarrosa Ledeb.)的地上凋落物产量以及地上凋落物和根的化学组成被测量。在有-无狼毒斑块下,各种土壤的库(比如,铵态氮、硝态氮、无机磷和微生物生物量)和周转率(包括净矿化、净硝化、总硝化、反硝化和微生物呼吸速率)被测量和比较。(2)在非生长季节,尤其是春季冻融交替期,选取了两个研究地点——尕米寺和卡卡沟(北纬32°59',东经103°41',海拔3400 m),分别测定有狼毒和无狼毒斑块下土壤微生物生物量碳和氮、可溶性有机碳和氮以及铵态氮和硝态氮的动态变化。同时,分别在上述两个地点有-无狼毒的样地上,研究6 个主要物种(狼毒、圆穗蓼、草地早熟禾、四川嵩草、鹅绒委陵菜和鳞叶龙胆)从秋季开始、为期1 年的凋落物分解过程。 针对狼毒花粉化感对同花期其它物种可能的花粉化感作用开展以下工作:在实验室中,用一系列浓度的狼毒花粉水浸提液对与它同花期的其它物种以及自身花粉进行测试,测定花粉萌发率;在野外自然条件下的其它物种的柱头上施用上述浓度的狼毒花粉水浸提液,观测种子结实率,同时,观察狼毒花粉的种间花粉散布数量。 生长季节的研究结果表明,狼毒地上凋落物氮含量比其它几个主要物种更高,而木质素-总氮比更低。狼毒显著地增加其斑块下表层土壤中有机质的含量,而有-无狼毒的亚表层土壤在有机碳和总磷方面没有显著差异。狼毒表土中硝态氮含量在平地和阳坡比无狼毒土壤分别高113%和90%。狼毒表土中微生物生物量碳和氮量显著高于无狼毒表土。无论是平地还是阳坡,狼毒土壤的总硝化和微生物呼吸速率显著高于无狼毒土壤;而它们的反硝化速率只在平地有显著的差异。狼毒与其它物种间地上凋落物的产量和质量的差异可能是导致有-无狼毒土壤碳氮循环差异的原因。我们假设,狼毒可能通过增加贫氮生态系统土壤中的有效氮含量提高其入侵能力。 非生长季的研究结果表明,在青藏高原东缘的高寒草甸上,土壤微生物生3物量在11 月的秋-冬过渡期达到第一个峰值;在春季的冻融交替期,微生物生物量达到第二个峰值后又迅速降低。无机氮以及可溶性有机碳氮与微生物生物量有相似的变化过程。微生物碳氮比呈现显著的季节性变化。隆冬季节的微生物生物量碳氮比显著高于生长旺季的微生物碳氮比。这种变化可能暗示冬、夏季微生物的群落组成和对资源的利用有所不同。有-无狼毒斑块下土壤微生物和土壤碳、氮库一般只在秋-冬过渡期有显著差异,有狼毒土壤微生物生物量和土壤碳、氮库显著高于无狼毒土壤;而在之后的冬季和春季没有显著差异。所有6 个物种凋落物在非生长季分解率为24%-50%,均高于生长季的10%到30%。其中在秋-冬过渡期,凋落物开始埋藏的两周时间内,分解最快,达10%-20%。不同物种凋落物全年的分解率和分解过程有显著差异。圆穗蓼在全年的分解都较缓慢(非生长季26%,生长季15%),草地早熟禾和四川嵩草等全年的分解速率比较均匀(非生长季和生长季均为30%,非生长季略高),而狼毒在非生长季分解较快(约50%),而在接下来的生长季分解变得缓慢(约12%)。所有物种的凋落物氮含量在非生长季下降,而在随后的生长季上升。 实验室的花粉萌发试验证明,狼毒花粉对自身花粉萌发没有自毒作用,而其它受试的所有物种(圆穗蓼,秦艽(Gentiana macrophylla Pall. var. fetissowii),湿生扁蕾(Gentianopsis paludosa (Hook. f.) Ma var. paludosa),鳞叶龙胆,椭圆叶花锚(Halenia elliptica D. Don var. elliptica),蓝钟花(Cyananthus hookeri C. B.Cl. var. grandiflorus Marq.),小米草(Euphrasia pectinata Ten.),川西翠雀花(Delphinium tongolense Franch.),高原毛茛(Ranunculus tanguticus (Maxim.)Ovcz. var. tanguticus)和鹅绒委陵菜)的花粉萌发率随着狼毒花粉浸提液浓度的增加呈显著的非线性降低。大约3 个狼毒花粉的浸提液就可以抑制受试的多数物种的50%的花粉萌发。在鳞叶龙胆和小米草柱头上狼毒花粉的数量分别为5.76 个和3.35 个。狼毒花粉散布数量的差异最可能的原因在于是否有共同的传粉昆虫。花的形状(辐射对称VS 左右对称)、植株或花的密度以及花期重叠性可以部分解释这种差异。在野外试验中,我们发现6 个物种(秦艽、湿生扁蕾、鳞叶龙胆、椭圆叶花锚、蓝钟花和小米草)的种子结实率随狼毒花粉浸提液浓度的增加呈显著的非线性降低。鳞叶龙胆和小米草柱头上狼毒花粉的数量(分别是5.76 个和3.35 个)分别达到了抑制它们63%和55%种子结实率的水平。因此,狼毒对鳞叶龙胆和小米草可能存在明显的花粉化感抑制作用。狼毒周围的物种可能通过花期在季节或昼夜上的分异避免受到狼毒花粉化感的影响或者通过无性繁殖来维持种群繁衍,因此狼毒通过花粉化感作用对其周围物种繁殖的影响程度还需要进一步地研究。如果狼毒的花粉化感抑制作用确实存在,那么它可能成为一种自然选择压力,进而影响物种的进化。 Stellera chamaejasme L., a perennial toxic weed, has emerged and quicklydominated and spread in the high-frigid meadow on the eastern Tibetan Plateau ofChina since the 1960s. In the present study, effects of S. chamaejasme on carbon andnitrogen cycles on the high-frigid meadow on the eastern Qinghai-Tibetan Plateau ingrowing and non-growing season, and its pollen allelopathic effects on the sympatricspecies were determined. The present study that focused on carbon and nitrogencycles, especially on microbial biomass and pools of carbon and nitrogen innon-growing season, could profoundly illuminate plant-species effects on carbon andnutrient cycles and its seasonal pattern and help to understand spread mechanism ofS. chamaejasme as an aggressive weed. The present study also contributed to furtherunderstand carbon and nutrient cycles on alpine regions in non-growing season andprovide a basis on weed control of S. chamaejasme and scientific management in thehigh-frigid ecosystem. Effects of S. chamaejasme on carbon and nitrogen cycles on the high-frigidmeadow on the eastern Qinghai-Tibetan Plateau were determined. The study couldbe divided into two parts. (1) In the growing season, we quantified the effects of S.chamaejasme on carbon and nitrogen cycles in two types of topographic habitats, theflat valley and the south-facing slope, where S. chamaejasme was favored to spreadlitter and root were measured to explain the likely effects of S. chamaejasme on soilcarbon and nutrient cycles. The sizes of various soil pools, e.g. nitrite, ammonium,inorganic phosphorus and microbial biomass, and turnover rates including netmineralization, gross nitrification, denitrification and microbial respiration weredetermined. (2) In the non-growing season study, microbial biomass carbon andnitrogen, soluble organic carbon and nitrogen, ammonium and nitrate weredetermined through the non-growing season, especially in the processes offreeze-thaw of spring in two high-frigid sites, i.e. Kaka valley and Gami temple, onthe eastern Qinghai-Tibetan Plateau. Meanwhile, litter decomposition of six commonspecies, including Stellera chamaejasme L., Polygonum macrophyllum D. Don var.Macrophyllum, Poa pretensis L., Kobresia setchwanensis L., Potentilla anserina L.var. anserine and Gentiana squarrosa Ledeb., were also examined under theabove-mentioned experimental design through one whole-year, which began in theautumn in 2006. In the study of pollen allelopathy, several work, including in vitro study oneffects of extract of pollen from S. chamaejasme on sympatric species and pollenfrom itself, field experiments on effects of pollen extract with the same regime ofconcentrations on seed set and field observation on heterospecific pollen transfer ofS. chamaejasme to six of those sympatric species has been done. The results in the growing season showed that aboveground litter of S.chamaejasme had higher tissue nitrogen and lower lignin: nitrogen ratio than thoseco-occurring species. S. chamaejasme significantly increased topsoil organic matter,whereas no significant differences were found for organic C and total P in subsoilbetween under-Stellera and away-Stellera locations. The nitrate in Stellera topsoilwas 113% and 90% higher on the flat valley and on the south-facing slope,respectively. Both microbial biomass C and N were significantly higher in Stelleratopsoil. Gross nitrification and microbial respiration were significantly higher inStellera topsoil both on the flat valley and on the south-facing slope, whereassignificant differences of denitrification were found only on the flat valley. Thedifferences in the quantity and quality of aboveground litter are a likely mechanismresponsible for the changes of soil variables. We assumed that S. chamaejasme couldenhance their spread by increasing nutrient availability in N-deficient ecosystems. The results in the non-growing season showed that microbial biomass achievedthe first summit in late autumn and early winter on the eastern Qinghai-TibetanPlateau. In the stages of freeze-thaw of spring, microbial biomass firstly achieved thesecond summit and subsequently sharply decreased. Inorganic nitrogen, solubleorganic carbon and nitrogen had a similar dynamics with that of microbial biomass.Ratio of microbial biomass carbon and nitrogen had an obviously seasonal pattern.The highest microbial C: N were in the non-growing season, which weresignificantly higher than those in the growing season. The seasonal pattern inmicrobial biomass C: N suggested that large changes in composition of microbialpopulation and in resources those used by microbes between summer and winter.Generally, microbial biomass and pools size of carbon and nitrogen in Stellera soilwere significantly higher than those under adjacent locations in late autumn andearly winter, but there were not significant differences in winter and in spring. Litterof all the focal species (Stellera chamaejasme L., Polygonum macrophyllum D. Donvar. Macrophyllum, Poa pretensis L., Kobresia setchwanensis Hand.-Maizz.,Potentilla anserina L. var. anserine and G. squarrosa Ledeb.) decomposed about24%-50% in the non-growing season, which were higher than those in the growingseason (ranged from 10% to 30%). Litter decomposed 10%-20% within the first twoweeks in late autumn and early winter. Significant differences in the whole-yeardecomposition rate and in the processes of decomposition were found among species.Polygonum macrophyllum decomposed slowly through the whole year (26% and15% in the non-growing season and in the growing season, respectively). Certainspecies, such as P. pretensis L. and K. setchwanensis, decomposed at a similar rate(30% both in the non-growing and in the growing season, slightly higher in the8growing season than those in the growing season), whereas S. chamaejasmedecomposed more rapidly (about 50%) in the non-growing season and subsequentlydecomposition became slow (about 12%) in the growing season. Litter nitrogencontents of all the focal species firstly decreased in the non-growing season and thenincreased in the growing season. In vitro experiments of pollen allelopathy, the results showed that pollen from S.chamaejasme was not autotoxic, whereas pollen germination in all the sympatricspecies (Polygonum macrophyllum D. Don var. Macrophyllum, Gentianamacrophylla Pall. var. fetissowii, Gentianopsis paludosa (Hook. f.) Ma var. paludosa,Gentiana squarrosa Ledeb., Halenia elliptica D. Don var. elliptica, Cyananthushookeri C. B. Cl. var. grandiflorus Marq., Euphrasia pectinata Ten., Delphiniumtongolense Franch., Ranunculus tanguticus (Maxim.) Ovcz. var. tanguticus andPotentilla anserina L. var. anserina) decreased nonlinearly as the increasingconcentrations of extract of pollen from S. chamaejasme. Pollen Extract of threepollens from S. chamaejasme generally inhibited 50% pollen germination of most ofthe focal species. 5.76 and 3.35 pollens from S. chamaejasme were observed in fieldon stigmas of G. squarrosa and E. pectinata, respectively. Differences inheterospecific pollen transfer of S. chamaejasme could be attributed to the primaryreason whether they shared common pollinators. Flower morphology (e.g.zygomorphic or actinomorphic), plant or floral density and concurrence in floweringphonologies could explain, in part, the differences in heterospecific pollen transfer.In field experiments, the results showed that seed set in six sympatric species(Gentiana macrophylla Pall. var. fetissowii, Gentianopsis paludosa (Hook. f.) Mavar. paludosa, Gentiana squarrosa Ledeb., Halenia elliptica D. Don var. elliptica,Cyananthus hookeri C. B. Cl. var. grandiflorus Marq. and Euphrasia pectinata Ten.)decreased nonlinearly as the increasing concentrations of extract of pollen from S.chamaejasme. According to the nonlinear curves, the amounts of pollens from S.chamaejasme on stigmas of G. squarrosa and of E. pectinata (i.e. 5.76 grains and3.35 grains, respectively) could reduce 63% and 55% seed set of G. squarrosa and ofE. pectinata, respectively. Thus, allelopathic effects of S. chamaejasme on G.squarrosa and E. pectinata could be realistic. The sympatric species of S.chamaejasme could avoid pollen allelopathy of S. chamaejasme to sustainthemselves. This highlights the need to study how much pollen allelopathy in S.chamaejasme influences the sympatric species through divergence in seasonal ordiurnal flowering phonologies or through asexual reproduction. If pollen allelopathyin S. chamaejasme was confirmed, it could be as a pressure of natural selection andthus play an important role in species evolution.
Resumo:
通过趾骨切片可以准确鉴定年龄,了解一个物种的最长寿命,也为我们研究确定一个物种的生长特点、性成熟期,以及一个地区一个物种的年龄结构、种群生态(Marnell,1998)和群落生态提供重要信息(Morrison,et a1.,2004)。 本论文使用骨骼鉴龄法对中国浙江省宁波市北仑瑞岩寺林场的镇海棘螈(Echinotriton chinhaiensis)雌性繁群进行了年龄结构研究。结果显示:第一次参加繁殖的年龄为3龄;繁群中数量占优势的是5龄、6龄。而在6龄以后参加繁殖的雌性个体数便开始随着年龄的增大而逐渐减少。参加繁殖的雌性年龄最大个体为8龄。平均年龄为5.13龄。同时对其年龄和头体长、体全长的相关性检验,发现其年龄与头体长和体全长不相关,镇海棘螈雌性的生长方式表现为性成熟后能量主要用于繁殖。 另外,对李子坪大凉疣螈(Tylototriton taliangensis) 雄性繁群进行了年龄结构研究。结果显示:大凉疣螈雄性第一次参加繁殖的年龄为4龄;繁群中数量占优势的是5龄、6龄、7龄。而在7龄以后参加繁殖的雄性个体数便开始随着年龄的增大而逐渐减少。参加繁殖的雄性中年龄最大的个体为10龄。平均年龄为6.7龄。对其年龄和头体长、体全长的相关性检验,发现其年龄与头体长和体全长不相关,大凉疣螈雄性生长特点也表现为性成熟后生长缓慢的特点。 研究材料方面,本文采用野外采样与标本馆标本相结合的方式获得了中国蝾螈科2个重要保护物种繁殖群体的剪(指)趾材料,使得建立于其上的年龄结构工作更加可靠、更加具有代表性。 此外,本论文讨论了镇海棘螈瑞岩寺种群繁殖总量年度间的差异及其产生原因。将1998、1999、2000、2008、2009年镇海棘螈(Echinotriton chinhaiensis) 瑞岩寺种群的繁殖量进行比较,发现虽然雌性平均窝卵数比较稳定,但繁殖总量小于1998、1999、2000年任何一年总产卵量的50%。对2008年镇海棘螈繁殖量大幅下降的原因分析发现, 2007年9、10月影响严重台风的两次强台风、瑞岩寺景区开发等因素可能是造成近年该种群繁殖量大幅下降的原因。而2008年初50年不遇的低温是否影响镇海棘螈的繁殖值得进一步追踪研究。2009年繁殖量较2008年没有明显的增长,可能是由于2007年的台风影响了其繁殖营养的积累。台风的影响可能存在滞后现象,对此有待进一步监测证明。 本研究首次对中国蝾螈科物种进行的年龄结构鉴定,为进一步了解中国蝾螈科动物的种群生态打下了坚实的基础。 Using skeletochronology, we can know the life span of a species, age of reaching sexual mature, and of course age structure, which are vital(Morrison,et a1.,2004). Skeletochronology was performed on Echinotriton chinhaiensis Ruiyansi female population. The result shows that: The oldest individuals were 8 years old and the youngest ones were 3 years old. Individuals of age class 5(39.13%) and 6(21.74%) were most numerous. The number of individuals participated in reproduction decreased with the increase of age after the sixth year. Average age is 5.13 years. There is no correlation between age and body size (SVL and TL). For female chinhai salamander, energy is devoted to reproduction after reaching sexual maturation. While using skeletochronology to study Tylototriton taliangensis Liziping male population, the oldest individuals is 10 years old, and the youngest ones is 4 years old. Individuals of the age class 5, 6, and 7 dominat this population. The number of individuals decrease with the increase of age also after the seventh year. Average age is 6.7 years old in this population. there is also no correlation between age and body size (SVL and TL).It turned out that T. taliangensis tend to grow slowly after reaching sexual maturation. In this thesis, specimens from both wild and museum were used to gain enough toe clipping samples. A big sample size guarantees the reliability of this study. In the meantime, E. chinhaiensis’s annual reproduction of the year 1998, 1999, 2000 ,2008,and 2009 was compared. The result shows there is a huge decline in E. chinhaiensis’s annual reproduction in 2008,even the egg clutch is very stable. After analyzing, it turned out the huge decline in 2008 was probably caused by typhoon in 2007, besides the effect of tourism development and cash crop planting. While the impact of extreme weather of 2008 on reproduction needs further investigation. In the year 2009, there is no obvious increase in annual reproduction. It maybe due to lasting impact of typhoon in 2007. It is the first age-structure study on these two Chinese salamanders. A solid foundation was laid for further population ecology study of these two species.
Resumo:
水稻是重要的粮食作物,其产量的增加和品质的改良都是关系国计民生的大事。就我国现阶段的国情而言,水稻产量在现有水平上稳步提升仍是未来十几年甚至几十年农业生产最重要的目标之一。尽管根据“超级杂交水稻育种”的战略设想和水稻育种实践,通过不断地改进育种技术可望在更高的产量水平上进行水稻杂种优势利用,在稻属植物内还具有很大的产量潜力可以挖掘。然而,仅仅从现有的种质基础出发,要更大幅度提高水稻单产,实现“超级杂交稻”的目标也存在一些困难:现有的推广品种是二倍体,尽管种类众多,但是其基因组的来源相对单一;同时,水稻基因组DNA含量也是作物中最少的,基因组内寻求开发潜力有一定困难;水稻作为C3植物,光合利用效率不高也是制约水稻产量提高的因素之一。因此,寻求常规手段以外的技术突破或者方法创新,是实现“超级杂交稻”的目标的迫切需求。本研究利用秋水仙素能抑制细胞分裂中纺锤丝的收缩、使细胞染色体加倍的作用,对水稻幼穗诱导的愈伤组织细胞进行加倍,并分化出再生植株;创制出水稻同源四倍体新的种质材料,在此基础上选育水稻同源四倍体雄性不育三系材料,并实现水稻同源四倍体的三系配套,开展水稻同源四倍体杂种优势利用和四倍体杂交水稻选育研究,建立水稻同源四倍体杂种优势利用的新技术体系。这不仅有助于倍性水平杂种优势的开拓和利用,同时也将为我国新世纪“超级稻”育种研究开辟一条新的技术途径。 水稻幼穗诱导愈伤组织并分化成苗是一项成熟、简单的组织培养技术。本研究以普通二倍体水稻亲本为材料,用秋水仙素进行水稻的多倍体化诱导,创制同源四倍体水稻三系亲本材料并对其进行鉴定。多倍体化以秋水仙素诱导的愈伤组织培养为基础,研究不同秋水仙素浓度梯度和愈伤组织诱导培养基组合对诱导四倍体植株的影响。结果表明在MS+2,4 D 1.0mg/L+ KT0.2mg/L+ IAA0.2mg/L 和500mg/L的秋水仙素处理下,水稻愈伤组织染色体加倍(有最高的效率)效果较好,平均加倍频率可达25.26%,其中,材料CDR22和IR26诱导较易成功,加倍频率分别达到75%和26.5%;相对材料94109 1.3%加倍频率和冈46B 10.8%加倍频率,诱导率差异极显著。 对水稻四倍体材料进行了形态学鉴定结果表明,与二倍体水稻对照相比其株高、穗长、花粉育性等主要农艺性状,确定四倍体材料在穗长和千粒重两方面极显著提高,种子的长度和宽度也显著增长。对花粉育性鉴定,确认水稻四倍体不育系材料仍为不育,保持系材料自交和杂交可育,恢复系材料自交和杂交可育。对四倍体材料进行细胞形态、染色体数目等方面进行细胞学鉴定,经核型分析表明水稻四倍体材料具有48条染色体,是二倍体水稻的两倍。水稻四倍体材料根尖分生组织细胞与二倍体的根尖分生组织细胞相比,细胞体积、细胞核和核仁显著增大。四倍体三系材料在细胞有丝分裂中期均可规则排列在赤道板,并能均等地移向两极;后期观察中没有发现染色体分离滞后现象,分裂末期细胞能够形成大小相对均一的子细胞。水稻同源四倍体三系材料细胞分裂未见异常,植株生长发育正常。 从1996年至2006年,针对结实率、有效分蘖、着粒数和穗长等主要农艺性状,通过系谱选育的方法,对培育的同源四倍体水稻亲本材料进行了连续选择和改良,取得较好成效。表现为结实率的改良效果极佳,所有改良材料的平均结实率均呈上升趋势,如D237(29.70%→72.70%)、DTB(19.55%→53.21%)等。有效分蘖总体呈现上升趋势,但在不同的年份,如1998和2002存在较大的负向波动。部分材料改良效果明显,如D19B(5.87→13.50)、D什香 (7.00→12.00)等;同时一些材料如DTB和D明恢63虽然总体略有提高,但在不同的年份波动很大,因此存在较大改良阻力,原因还有待进一步研究。着粒数的改良上升趋势比较显著,除保持系的DTB之外,其余材料的平均着粒数有显著提高。穗长的改良阻力较大,虽然不同材料总体上有所提高,但效果并不显著,并且不同年份有较大负向波动(2001)。此外还对株高、剑叶长等性状也进行了选择,但效果不显著,原因有待进一步提高。同源四倍体材料产量相关性状遗传改良幅度不一致,保持系和恢复系间的遗传改良效果也存在差异。这为同源四倍体水稻的进一步利用打下了良好的基础。 籼稻和粳稻亚种间杂交及杂种优势利用的主要障碍就是其低的结实率。而同源四倍体杂交水稻的研究为提高杂交水稻的杂种优势利用创造了新的途径。本研究通过随机区组设计方案,挑选性状优良的二倍体水稻材料,包括雄性不育系,保持系和恢复系进行秋水仙素诱导加倍,从而获得同源四倍体水稻对应的三系材料。利用选育的优良水稻同源四倍体三系材料,配制7个杂交组合,杂交F1代与其恢复系亲本进行比较,用于计算超亲优势(HB);而杂交F1代与生产上大面积推广的二倍体杂交品种汕优63进行比较,用于计算杂种优势。结果显示,同源四倍体杂交水稻的超亲优势表现为:每株有效穗变化幅度为1.4%至105.9%,总粒数为0.5%至74.3%,每穗实粒数为17.6%至255.7%,结实率为9.6%至130.4%。这些农艺性状的改良使得这7个杂种F1的理论产量的超亲优势高达64.8%至672.7%。小区试验中四倍体杂交水稻组合T461A/T4002和T461A/T4193分别比二倍体对照汕优63提高46.3%和38.3%以上,除一个品种以外所有品种产量均接近或高于汕优63的产量。同源四倍体水稻强大的杂种优势表明,亚种间杂交育性低的问题可通过四倍体化及强化选择来解决。此外,同源四倍体杂交水稻器官的巨大性也是其产量提高的有利因素,水稻同源四倍体三系杂种优势利用研究具有一定的理论价值和商业生产潜力。 Rice is one of the major food crops, the improvement of the production and quality of it is an important thing related to the people's livelihood. On China's current national conditions, steadily increase of the rice yield based on the current level is still one of the most important goals in the next decade or even decades of agricultural production. According to the "super hybrid rice breeding" the strategic and rice breeding practice, improvement of the use of hybrid rice heterosis through continuous improvements in breeding technology is expected to get a higher level of rice yield, there are also a great yield potential can be exploited. However, there are also some difficulties to increase rice yield obviously and implement the goal of "super hybrid rice" based on the existing germplasm: Rice varieties in promotion are diploid, although there are many varieties, but their genome are from a comparatively single source; Meanwhile, the rice genome DNA are the least among the crops, it is difficult to exploit the development potential within the genome; Rice as C3 plants, photosynthetic efficiency is not high, it is one of the factors constraint rice yield. Therefore, seeking technological breakthroughs or innovative methods different from conventional means is the urgent needs to reach the target of "super hybrid rice". Using colchicine inhibit spindle contraction during cell division, double the cell chromosome, we induced callus cells from rice panicle to be doubled, and differentiated regeneration; we created a new autotetraploid rice germplasm material, and on that basis we bred male sterility three line autotetraploid rice materials, and the achieved the three line rice autotetraploid matchmaking, researched in autotetraploid rice heterosis usage and tetraploid hybrid rice breeding, constituted a new technology system of autotetraploid hybrid rice heterosis utilization. This not only helps the tetraploid rice heterosis exploration and use, but also inaugurates a new technical means for China in the new century "super rice" breeding research. We chose ordinary diploid rice as materials, using colchicine to induce the polyploidization, created the autotetraploid rice three-line materials and identified them. The polyploidization was based on the colchicine-induced callus tissue culture, and we experimented different colchicine concentrations and culture mediums to induce tetraploid plants, confirmed that the optimal concentration for inducement was 500 mg/L, the average induce rate was 25.26 %. Among all the materials, CDR22 and IR26 had higher induced rate; in contrary, 94109 and GANG46B had lower induced rate, the difference was significant. Autotetraploid materials was identified of both morphological and cytological, compared plant height, length of pollen sterility, and other major agronomic traits with a diploid rice as the control plant, identified that the autotetraploid materials had very significant advantages in ear length and thousand-grain weight, as well as the size of the seeds. Cytology identification included observation of the cell morphology, the number of chromosomes, and karyotype analysis on the autotetraploid materials confirmed that their chromosome number was 48, twice of the diploid rice. Mitoses in the three lines were common: chromosomes arrayed normally in metaphase and separated balanced into the two poles, chromosome moved without lagging in anaphase and daughter cells normally formed in telophase except one. It has been proved that tetraploid rice has normal meiosis as their diploid relatives, which usually including series of sub-phases as interphase, prophase I (five sub-phases), prophase II, metaphase I, II, anaphase I, II and telophase I, II. However, abnormal phenomena, such as formation of tetravalent, trivalent and univalent, chromosome lagging and so on, which would finally block meiosis. Configurations of chromosome in metaphaseⅠwere versatile in structure and form accept the bivalent. That condition varied in different strain, suggesting more complex paring configurations and more versatile genetic characters in tetraploid rice. All these abnormalities in meiosis contributed to low fertility of gamete and might consequently resulted in low seed setting. Successive selection and improvement on seed set, productive tiller per plant, total grains per panicle, panicle length and so on had been carried out from 1996 to 2006. The raise of seed sets was significant in both restorers and maintainers. Seed sets of some strains were improved more significantly than others, for example D237(29.70%→72.70%)、DTB(19.55%→53.21%)and et al.. Productive tiller per plant was improved to some extant. The tendency of improvement was rising on the whole but changed in some years such as 1998 and 2002. Part of the stains increased greatly, such as D19B(5.87→13.50)、Dshixiang (7.00→12.00) and so on, but some strains including DTB and Dminghui63 only increased little and decreased in some years by unknown reason. Total grains per panicle increased significantly and all strains except DTB increased. Improvement of panicle length termed to be hard. Different strains showed different capacities for improvement and floating existed in different years for example 2001. It has been proved that other agronomical traits including plant length, flag leaf length and so on could be improved but not significantly by selection also. In a word, agronomical traits could be raised by successive selection that is prerequisite for further utility of autotetraploid rice. Poor fertility is the main barrier for utilizing heterosis between the two rice (Oryza stiva L.) sub-species, indica and japonica. Recently, the development of autotetraploid hybrids (2n=4x=48) has been suggested as a new method for increasing heterosis in hybrid rice. Using standard experimental protocols, the elite diploid rice male sterile, maintainer, and restorer lines were colchine-doubled and autotetraploid counterparts were obtained. Seven resulting hybrids were analyzed for heterobeltiosis (HB), where the F1 was compared to the male parent, and the degree of heterosis, where the F1 was compared to the diploid commercial hybrid, Shanyou 63. The HB among the autotetraploid hybrids ranged from 1.4 to 105.9% for the productive panicles per plant, 0.5 to 74.3% for total kernels per panicle, 17.6 to 255.7% for filled kernels per panicle, and 9.6 to 130.4% for seed set. Improvements in these yield components resulted in the HB for kernel yield ranging from 64.8 to 672.7% among the seven hybrids. Hybrids T461A/T4002 and T461A/T4193 yielded 46.3 and 38.3% more, respectively than Shanyou 63, and all other hybrids but one yielded the same or more than Shanyou 63. The high heterosis for yield suggests that hybrid sterility between two rice sub-species may be overcome by using tetraploid lines followed by intensive selection. Also, the gigantic features of the autotetraploid hybrids may establish a plant structure able to support the higher yield.
Resumo:
小麦加工品质改良已成为我国小麦育种的主要目标之一。特别是我国加入WTO以后,对小麦产品的质量提出了更高的要求,小麦品质改良的任务将更加艰巨和重要,小麦胚乳蛋白是影响小麦加工品质性状的重要因素。因此,深入了解小麦胚乳蛋白对加工品质性状的影响及其分子基础,为品质改良提供理论依据和科学指导,对加速我国小麦品质育种和优质小麦生产具有重要意义。本研究选用在麦谷蛋白5个基因位点(Glu-A1、Glu-B1、Glu-D1、Glu-B3和Glu-D3)上均含不同等位基因的小麦品种99G45和京771及Pm97034和京771杂交F9代共164个麦谷蛋白纯合系,及228个中国推广普通小麦品种和高代育成品系为试材,研究了麦谷蛋白Glu-1和Glu-3位点基因等位变异对籽粒蛋白、湿面筋含量、Zeleny沉降值和SDS沉降值间的关系;本研究还利用小麦A、B和D基因组中低分子量麦谷蛋白亚基(LMW-GS)基因特异引物,通过PCR方法克隆了1个Glu-A3位点和3个Glu-B3位点LMW-GS基因片段,在此基础上分析了不同等位基因对品质造成差异的分子基础;另外,本研究对中国近年推广的部分品种和育成的高代品系资源的多样性进行了分析。现将主要研究结果简述如下: 1. 对来自三个麦区的148份材料的醇溶蛋白组成进行了分析,结果表明,各麦区醇溶蛋白模式具有较大差异。在ω区,A7、B、E、F、G、J、P、Q、S和U仅存在于西南秋播麦区;A3、M、N、R、W和X仅存在于黄淮特种麦区;K仅存在于北方冬麦区;A6是北方冬麦区出现频率最高的带型模式,而西南秋播麦区中D出现的频率最高。ω-区的E、H和M几种模式是以前国内外未曾报道的。且初步确定,这些模式对品质性状具有正效应。至于γ区,A、B、D、E和F在各区均有出现,其中B和E在各区出现的频率都很高,在26.1-39.6%之间。相反,H 仅出现在黄淮特种麦区,J仅限于西南秋播麦区。对于β-区醇溶蛋白,B型模式在所有区中都相当高,而模式A仅存在于第三区.对于α-区,模式A在Ⅲ区而模式D在Ⅱ区出现的频率很高。1BL.1RS易位系在中国小麦品种中出现频率高达41.2%,在I, II和Ⅲ麦区的出现频率分别为 45.5、43.5和35.2%。各生态区模式的差异可能是品种适应不同生态条件和人为选择的结果,但这有待进一步证明。由于醇溶蛋白位点(Gli-1)与LMW-GS位点(Glu-3)紧密连锁,本结果可为下面确定普通小麦LMW-GS等位基因变异所用。 2. 利用Gli-1与Glu-3的紧密连锁,以228个小麦品种/系为材料,首次对中国小麦品种麦谷蛋白亚基的6个位点进行综合分析,研究小麦籽粒蛋白与品质性状间的关系,结果表明6个高分子量(HMW)和低分子量(LMW)麦谷蛋白位点对蛋白质含量的效应大小为,Glu-D1>Glu-B3>Glu-A1=Glu-B1> Glu-A3=Glu-D3;对GMP含量的效应大小为, Glu-A3>Glu-B3>Glu-D1> Glu-B1>Glu-A1>Glu-D3;对湿面筋含量的效应大小为, Glu-B1>Glu-B3= Glu-D3>Glu-A3>Glu-A1>Glu-D1;对Zeleny沉降值的效应大小为, Glu-A1> Glu-B3>Glu-D3>Glu-D1>Glu-B1>Glu-A3;对SDS沉降值的效应大小为, Glu-B3>Glu-A1=Glu-D1=Glu-A3>Glu-D3>Glu-B1。对蛋白含量而言,各位点的最佳组合方式为1、17+18、5+10、Glu-A3e、Glu-B3g、Glu-D3b;对湿面筋含量而言,各位点的最佳组合方式为1、6+8、5+10、Glu-A3d、Glu-B3c、Glu-D3b;对Zeleny沉降值而言,各位点的最佳组合方式为N、17+18、5+10、Glu-A3d、Glu-B3d、Glu-D3b;对SDS沉降值而言,各位点的最佳组合方式为1、7+8、2.2+12、Glu-A3b、Glu-B3g、Glu-D3b。另外,分析了稀有亚基对5+12与2.2+12与品质性状的关系,认为5+12对品质有负效应,2.2+12对品质有正效应。在品质育种时,应对优异组合或优异亚基加以利用。 3. 首次利用重组自交系(RILs)为材料,研究麦谷蛋白亚基表达量与品质性状的关系,通过对重组自交系中各HMW-GS表达量的分析,认为,就单个亚基的表达量而言,7亚基最高;其次为2亚基、5亚基、12亚基和10亚基;亚基9和1的表达量最小;N亚基不表达。对成对出现的亚基对而言,x型和y型亚基的总表达量2+12>5+10>7+9>17+18。就单个亚基与品质性状的关系而言,仅有10亚基的表达量与蛋白含量的相关性达5%的显著水平,2亚基的表达量与湿面筋含量呈负相关,显著水平也达5%,其余单个亚基对品质性状均无显著影响;就x型/y型亚基的比例来看,2/12和5/10对湿面筋含量都有显著的负效应;对某一位点等位基因控制的亚基表达总量来看,2+12对SDS沉降值有显著负效应。另外,本研究得出:2+12的亚基对的负效应主要体现在2亚基上,且在同一位点上,x型亚基的表达量大于y型。所以推导稀有亚基组合2+10很可能也是劣质亚基。 4. 以 Glu-A1、Glu-B1、Glu-D1、Glu-B3和Glu-D3作为5个因素对99G45/京771和Pm97034/京771杂交后代的蛋白质含量和SDS沉降值进行多因素方差分析。结果表明,Glu-A1和Glu-D3对蛋白含量的加性效应达5%显著水平;Glu-D1 * Glu-D3对蛋白质含量的互作效应也达5%显著水平;其余位点的加性和互作效应对蛋白质含量的影响均不显著。对SDS 沉降值而言,Glu-D1的加性效应最大,贡献率为4.2 % ,达1 %显著水平,其次是Glu-B1位点,贡献率为3.3% ,达5%显著水平。其余位点对SDS 沉降值的加性和互作效应均未达5%显著水平。总体而言, 各位点对蛋白含量的效应大小为Glu-D3 > Glu-A1 > Glu-D1>Glu-B1>Glu-B3;对SDS沉降值的效应大小为Glu-D1>Glu-B1> Glu-D3>Glu-A1> Glu-B3。Glu-D1和Glu-D3位点上等位基因变异对蛋白含量有显著或极显著影响,含Glu-D1d和Glu-D3 GD、Glu-D3 JD基因的株系分别比含Glu-D1a和Glu-D3 PD基因的株系有较高的蛋白含量;在该遗传背景下,麦谷蛋白各基因位点对蛋白含量的效应大小依次排列为:Glu-A1位点1>N;Glu-B1位点7+9>17+18>14+15;Glu-D1位点5+10>2+12;Glu-B3位点GB>JB>PB;Glu-D3位点GB>JB>PB。对SDS沉降值的效应大小依次排列为:Glu-A1位点1>N;Glu-B1位点7+9=17+18>14+15;Glu-D1位点5+10>2+12;Glu-B3位点GB>JB>PB;Glu-D3位点GB>JB>PB。所以,对蛋白含量和SDS沉降值均较好的组合为1,7+9,5+10,GB,GD。 5. 因为GB和PB对品质的效应有显著差异,选取LMW-GS位点特异扩增引物对京771、99G45和Pm97034的Glu-B3位点进行扩增,结果得到三个不一样的扩增片段(Genebank号为DQ539657-DQ539659),得到的基因片段与Genebank中已报道的同类序列高度同源。通过克隆片段组成的分析,发现对Pm97034的序列较京771和99G45段少一个7氨基酸的重复单元,这可能是它较另外两个片段对面筋强度影响小的主要原因;另外,在99G45的序列中,124位处出现L(亮氨酸)代替P(脯氨酸),158位处出现了T(苏氨酸)代换M(蛋氨酸),这可能是99G45Glu-B3位点序列对SDS沉降值的效应显著优于Pm97034的原因。 6.通过对RILs各位点同普通小麦品种(系)各位点与品质关系的比较,发现对SDS沉降值的效应,各位点在不同研究材料中是不同的,普通小麦中:Glu-B3>Glu-A1=Glu-D1=Glu-A3>Glu-D3>Glu-B1,RILs中:Glu-D1>Glu-B1> Glu-D3>Glu-A1> Glu-B3。利用重组自交系材料(完全排除了1BL/1RS易位干扰)所得到的结果与Gupta and MacRitchie (1994)所得结论一致。进一步证实了1BL/1RS易位对小麦品质的重要影响。对蛋白含量而言,普通小麦品种(系)中,Glu-D1>Glu-B3>Glu-A1=Glu-B1> Glu-A3=Glu-D3,RILs中,Glu-D3 > Glu-A1 > Glu-D1>Glu-B1>Glu-B3,和对SDS沉降值的效应一样,推断在非1BL/1RS易位的情况下,各位点对其效应应为Glu-D3 > Glu-A1 > Glu-D1>Glu-B1>Glu-B3。 对同一位点的等位基因而言,普通小麦和重组自交系中Glu-A1和Glu-D1上的等位基因对品质性状的贡献是一致的,但Glu-B1上的等位基因对SDS沉降值的贡献发生了变化,普通小麦中17+18>7+9,RILs中7+9>17+18,这可能也是1BL/1RS造成的。 Baking quality improved is one of the main object of wheat bread in China. The overall objective of the present studies was to increase the understanding about protein quality in wheat, i.e. to make it possible to improve the production of wheat with desired quality for different end-uses. With the analysis of gluten protein in RILs, 99G45/Jing 771 and Pm97034/Jing, and 228 wheat cultivars or lines in China, the correlations between glutenin compositions and protein content, glutenin macropolymer(GMP), wet gluten content, Zeleny sedimentation value and SDS sedimentation value contentand breadmaking quality were studied. Also a rapid and efficient detection method of geneticpolymorphism at Glu-B3 loci in wheat was established using polymerase chain reaction(PCR).The results obtained were as follows: 1. Cultivated Chinese wheat germplasm has been a valuable genetic resource in international plant breeding. Patterns of gliadin among cultivated Chinese accessions are unknown, despite the proven value and potential novelty. The objective of this work was to analyse the diversity within improved Chinese wheat germplasm. The electrophoretic banding patterns of gliadin in common wheat cultivars and advanced lines were determined by acid-polyacrylamide gel electrophoresis. For 148 leading commercial cultivars and promising advanced lines used in our study, 48 patterns were identified, 29 corresponding to ω-gliadin, 9 to γ-gliadin, 5 to β-gliadin and 5 to α-gliadin. The most frequent patterns were A6 in ω; B in γ; B in β and A in the region of α. 116 band types appeared in the148 samples: 94 accessions had unique gliadin types, and 22 gliadin types while not unique were found in 54 accessions. The gliadin patterns of Chinese wheat cultivars and lines greatly differed from the patterns of wheat lines from other countries. Three patterns, E, J, H, M, N and O in the ω-zone had not previously been reported. Three wheat zones,the Northern Winter Wheat Region, the Yellow and Huai Valley River valleys Winter Wheat Region and the Southwestern Winter Wheat Region,in China showed different frequencies in their gliadin patterns. This information can be used to monitor genetic diversity with Chinese wheat germplasm. 2. To analyse the relationship between the loci and characteristics quality, we utilized the 228 cultivars/lines. The results showed that : For protein content, Glu-D1 >Glu-B3>Glu-A1=Glu-B1>Glu-A3=Glu-D3. For GMP content, Glu-A3>Glu-B3 >Glu-D1>Glu-B1>Glu-A1>Glu-D3. For wet gluten content, Glu-B1>Glu-B3= Glu-D3>Glu-A3>Glu-A1>Glu-D1. For Zeleny sedimentation value, Glu-A1>Glu-B3> Glu-D3>Glu-D1>Glu-B1>Glu-A3, For SDS sedimentation value, Glu-B3>Glu-A1= Glu-D1= lu-A3>Glu-D3>Glu-B1。For protein content, the best combination of 6 loci is (1,17+18,5+10,Glu-A3e, Glu-B3g,Glu-D3b). For wet gluten content, the best combination of 6 loci is (1,6+8,5+10,Glu-A3d,Glu-B3c,Glu-D3b). For Zeleny sedimentation value, the best combination of 6 loci is (N,17+18,5+10,Glu-A3d, Glu-B3d, Glu-D3b). For SDS sedimentation value, the best combination of 6 loci is(7+8,2.2+12,Glu-A3b, Glu-B3g,Glu-D3b)。Additional, we analysed the relationship between the subunits 5+12 and 2.2+12, think that 5+12 was negative for quality, 2.2+12 is postive for quality. It should be effective utilized. 3. It’s the first time to utilize RILs to study the relationship between subunits expression quantity and characteristics quality. The results showed that: For single subunit, the expression quantity of 7 is the highest. Then the 2, 5, 12 and 10. The expression of subunit 9 and 1 is the lowest. Subunit N is not expressed. For subunits, the expression quantity of x type and y type are 2+12>5+10>7+9>17+18. The significant relation of 5% only showed between the expression quantity of subunit 10 and protein content. The relationship between expression quantity of others and characteristic quality was not significant. For x type/ytype, 2/12 and 5/10 is negative relation insignificant level. For the subunit(s) in a loci, Only 2+12 effect SDS sedimentation value negative in significant level. 4. With RILs 99G45/Jing 771 and Pm97034/Jing 771, we found that: The effective of Glu-A1, Glu-D3 and Glu-D1 * Glu-D3 for protein content is significant at 5% level. The effect of other loci for protein wre not significant. For SDS sedimentation value, the effect of Glu-D1is the highest, which contribution is 4.2 % .Then the Glu-B1, contribution is 3.3%. The effect of other loci for SDS sedimentationvalue were not significant. In total, for protein content: Glu-D3 > Glu-A1 > Glu-D1>Glu-B1>Glu-B3; for SDS sedimentationvalue: Glu-D1>Glu-B1> Glu-D3>Glu-A1>Glu-B3. The effect of alleles in Glu-D1 and Glu-D3 loci are significant at 1% or 5%. In Glu-A1, 1>N; Glu-B1, 7+9>17+18>14+15; Glu-D, 5+10>2+12; Glu-B3, GB>JB>PB; Glu-D3, GB>JB>PB. For SDS sedimentation, Glu-A1, 1>N; Glu-B1, 7+9=17+18>14+15; Glu-D1, 5+10>2+12; Glu-B3, GB>JB>PB; Glu-D3, GB>JB>PB. The best combinations for SDS sedimentation value is 1,7+9,5+10,GB,GD. 5. Because of the difference of GB and PB for SDS sedimentation value, we selected the specific primer for LMW-GS loci to amplified the Glu-B3 of Jing771, 99G45and Pm97034. We got 3 amplify fragment (Gene Bank accession number are DQ539657-DQ539659). We found that the fragment of Pm97034 were deleted a repetitive 7 amino acid domain, which is perhaps the reason effect the gluten strength. Furthermore, in the position 124 of sequence 99G45, L has been replaced with P. Position 158, T replaced M, which may be the reason why the Glu-B3 locus of 99G45 is prefer to Pm97034 when refer to SDS sedimentation value. 6. Comparing the results of RILs and common wheat, we found that perhaps just the1BL/1RS made the difference of loci in different accession.
Resumo:
本文从不同厌氧生境中获得7组(C-2、Y-2、L-2 、NZ、H-3、CZ、L-3)具有纤维素降解能力的复合菌系。经过不断传代、淘汰纤维素降解能力降低的菌系,最后得到一组高效、传代稳定的厌氧纤维素分解复合菌系L-3。该菌系可使滤纸在42 h内溃烂,并能在分解纤维素的同时产氢气。对L-3复合菌系的产酶条件进行了研究,结果表明,在实验范围内该菌系的产酶最适条件为:pH 6.5,温度37 ℃,接种量5 %,最佳碳源为滤纸,最佳氮源为硫酸铵。第10天测得羧甲基纤维素酶(CMCase)、滤纸酶(FPA)、外切葡聚糖酶(C1)、β-葡聚糖苷酶(β-glucodase)的酶活分别为0.216 U/ml、0.101 U/ml、0.132 U/ml、0.002 U/ml,滤纸失重率70.6 %。发酵代谢产物乙醇和丁酸含量分别可达1378 mg/L 、2695 mg/L,发酵产生的气体中氢气含量最高可达70.2 %。DGGE结果表明该菌系主要由14种菌组成,其中有三株菌在发酵前后菌数发生了明显的变化,说明在以滤纸为底物的降解过程中,这三株菌起到了重要作用,对这三株菌进行了分子生物学鉴定,初步定为Clostridium phytofermentans、Clostridium cellulovorans、Desulfovibrio sp。 利用实验室分离得到的纤维素降解菌,最终配制出由10、X-1、X-13、ST-13、L-3组成的好氧-厌氧纤维素降解复合菌剂。以秸秆为发酵底物,菌剂接种量1%,利用复合菌剂预处理后的秸秆,发酵总产气量相对于对照提高了71.62%,甲烷含量最高可达70.08%。 A group of microbial consortia L-3 was isolated from the anaerobic fermentation residue of corn stalk, which could degrade cellulose and produce hydrogen. The CMCase, FPA, C1 and β-glucosidase activity of L-3 could reach to 0.216 U/ml, 0.101 U/ml, 0.132 U/ml and 0.002 U/ml, respectively. In the filter degrading process, the filter paper collapsed in the liquid culture within 42 h and the filter degrading rate could reach to 70.6% in the 13 days, meanwhile, hydrogen was determined and the highest hydrogen content was 70.2%. The optimum cellulase-degrading conditions were filter papaer as the carbon source, (NH4)2SO4 as the nitrogen source, 37 ℃ and pH 6.5 in this experiment. DGGE results showed that the microbial consortia L-3 mainly included 14 strains. The amount of 3 strains were changed during the fermentation. These strains were identified as Clostridium phytofermentans、Clostridium cellulovorans、Desulfovibrio sp by 16S rDNA sequence analysis. The cellulose- degrading microbial agent was composed by 10, X-1, X-13, ST-13, L-3 which were isolated in the laboratory. The straw pretreated by cellulose-degrading microbial agent was used to ferment, the total biogas production increased by 72% comparing to the control. The content of methane could reach to 70.08%。
Resumo:
猪场废水COD浓度高、氨氮浓度高、悬浮物浓度高,已成为农村面源污染的主要来源,并严重威胁到农村饮用水安全。猪场废水氨氮浓度高、处理难度大,如何采用经济高效的方法,去除氨氮使其达到排放标准,一直是猪场废水处理中面临的重要难题。 厌氧氨氧化是近年受到国内外水处理研究者广泛关注的新型生物脱氮技术,具有不需要外加有机碳源、节省供氧量、降低能耗等优点。虽然国内外研究者对厌氧氨氧化过程的脱氮机理、厌氧氨氧化菌的生理生化特性等进行了多方面的研究,但已有的报道大多以模拟废水为研究对象,以猪场废水为研究对象的报道,在国内外文献中极少有报导。 本论文以猪场废水为主要研究对象,考察了猪场废水的亚硝化过程、厌氧氨氧化的启动过程,并对亚硝化和厌氧氨氧化联合用于猪场废水脱氮进行了探索。 1.论文首先研究了猪场废水的亚硝化过程,考察了废水水质和主要运行条件对亚硝化过程的影响。实验表明:(1)亚硝化阶段反应时间为8到10h时,出水中氨氮和亚硝酸盐浓度比可达到1:1~1:1.23,满足厌氧氨氧化反应对二者比例的要求;达到前述要求时,氨氮去除率达到58.3~65.6 %,亚硝化率在整个过程均保持在97 %以上,COD去除率在59.2~68.6 %;(2)曝气量(溶解氧)对亚硝化过程影响显著,随着曝气量增大,达到厌氧氨氧化要求的氨氮与亚硝酸盐氮浓度比例所需水力停留时间τ越短,pH出现明显下降的时间越短;(3)τ对应的pH在7.8~8.1之间,无需进行pH调节即可满足厌氧氨氧化反应对pH的要求;(4)氨氮和COD降解过程遵循一级反应动力学,氨氮和COD降解的速率常数分别为0.0656~0.0724 1/h和0.0491~0.0664 1/h。 2.在进行亚硝化过程研究的同时,以模拟废水为试验对象,进行厌氧氨氧化启动研究。以反硝化污泥和养殖厂储水池厌氧底泥的混合污泥作为接种污泥,历时大约100天,培育出具有厌氧氨氧化活性的污泥,氨氮和亚硝酸盐氮最高进水浓度分别为223.8 mg/L和171.4 mg/L,去除率最高分别达48%和41.5%,此时二者消耗比例为1.33:1。 3.在猪场废水的亚硝化研究完成和厌氧氨氧化过程初步启动成功后,在模拟废水中逐步加入猪场废水的亚硝化处理出水,逐步实现亚硝化和厌氧氨氧化的组合。亚硝化出水添加到厌氧反应器后,厌氧氨氧化反应仍可继续进行,且去除效率逐步提高。研究发现添加的亚硝化出水中携带的亚硝化细菌在厌氧氨氧化菌膜外层生长并累积,增加了厌氧氨氧化反应基质的传质阻力,妨碍了厌氧氨氧化效率的提高。 4.亚硝化-厌氧氨氧化实际工程应用探索中,生物接触氧化池可在有效去除废水中的有机物的同时实现亚硝化,出水中氨氮和亚硝酸盐比例平均为1.10,可满足后续厌氧氨氧化的要求;在适宜的进水浓度和温度下,ABR池出现了厌氧氨氧化启动的迹象;研究同时发现,水质的波动和气温的变化是工程中影响厌氧氨氧化菌活性的重要因素。 论文的主要创新点在于:(1)以猪场废水为研究对象,以实现厌氧氨氧化为目标,对亚硝化过程进行了比较详细的考察,获得了亚硝化出水满足厌氧氨氧化要求的工艺条件,通过对其COD和氨氮降解过程的考察,得出亚硝化阶段COD降解和氨氮去除的动力学模型;(2)对亚硝化-厌氧氨氧化处理猪场废水进行了探索,确立了影响其污染物去除率稳定的重要因素。 论文的上述研究成果,为厌氧氨氧化技术的实用性研究提供理论依据。 Piggery wastewater, which is characterized by high concentration of COD、ammonium and suspend substance, has become a most important source of non-point source pollution and also severely threats drinking water security in rural area. How to discharge piggery wastewater with the ammonium concentration meeting standard by economical and effective method? This is the most urgent problem in piggery wastewater treatment. As a new biological nitrogen removal technology, Anammox process has been paid more and more attention by researchers all over the world. Anammox has advantages of no need of organic carbon addition, low oxygen consumption and energy consumption. Plenty of investigations have been carried out to the mechanism, physiological and biochemical characteristic of bacteria about Anammox. Most of researches focused on synthetic wastewater, there is rare report about its application in piggery wastewater. In this paper,experimental studies were performed to investigate Sharon process in treatment of piggery wastewater,the start up process of Annammox using synthetic wastewater were studied, the feasibility of applying Sharon-Anammox process in the nitrogen removal of piggery wastewater was evaluated. 1. Sharon process of piggery wastewater was firstly investigated to analyze the effects of water quality and main running parameters, which meet the NH4+-N to NO2--N ratio requirement of successive Anammox. Results showed: (1)During Sharon Process,after 8~10 hours’ reaction the NH4+-N to NO2--N ratio in effluent reached 1:1.0~1:1.23, when the removal percentage of NH4+-N was 58.3~65.6 %, a semi-nitration rate of above 97 % was achieved during the process; meanwhile 59.2~68.6 % of the COD was also removed. (2)The aeration rate(oxygen) had obvious effect on the hydraulic retention time(τ) which met the NH4+-N to NO2--N ratio requirement of Anammox. As aeration rate increased, the hydraulic retention time(τ) was shortened. (3) The pH corresponding to τ was between 7.8 and 8.1, thus it needed no artificial adjustment. (4) The reduction of ammonia and COD followed the first-order reaction kinetics. The velocity constants of ammonia and COD were 0.0656~0.0724 1/h and 0.0491~0.0664 1/h, respectively. 2. The startup of Anammox process using the artificial wastewater was performed simultaneously with Sharon. The aim was to investigate the running parameters of Anammox and make foundation for the combination stage. By using the mixture of denitrifying sludge and anaerobic sludge in tank of the breeding factory, sludge of Anammox activity was cultivated in UASB after 100 days. The removal percentage of NH4+-N and NO2-N were up to 48% and 41.5%, respectively, when the NH4+-N and NO2-N influent concentration were 223.8 mg/L and 171.4 mg/L, respectively, the NH4+-N and NO2-N removal rate was 1.33:1. 3. After investigation of Sharon and startup of Anammox, effluent of Sharon process was added into the synthetic wastewater to combine Sharon and Anammox step by step. It took some time after the addition of Sharon effluent that Anammox reaction continued and the removal rate kept increasing. It indicated that nitrifying bacteria were carried by the Sharon effluent cumulated in the outer layer of Anammox. This enhanced transfer resistance of Anammox reaction and the increasing removal rate was restrained. 4. In the bio-contact oxidation pond of practical project, Sharon process were carried out successfully and organic compounds were removed effectively. An average NO2-N/ NH4+-N rate of 1:1.0 was achieved in the effluent, which met the requirement of successive Anammox. Under condition of suitable influent concentration and temperature, there was evidence that Anammox could start up in ABR. The variety of wastewater and temperature had great affects on Anammox activity in practical engineering. Innovation of this paper: (1) The Sharon process for treating piggery wastewater was discussed in details. Technological parameters that met requirement of Anammox were obtained. The dynamic models of COD and ammonium removal in the process were educed. (2) Sharon-Ananmmox for treatment of piggery wastewater was investigated, and the primary influencing factors was studied. This paper could be a theoretical consult for research of Anammox utility.
Resumo:
本文从成都龙泉垃圾填埋场和宜宾造纸厂分离到耐酸性能优良的高温产甲烷菌RY3和中温产甲烷菌SH4,并将其与实验室现有的利用不同底物的产甲烷菌配伍组合成了复合菌剂。采用活性污泥作为固体附着物,研制出了固体产甲烷菌复合菌剂。 菌株RY3的pH耐受范围为5.5~10.5,最适生长pH 6.0~8.0。菌株RY3为革兰氏阳性,长杆状,多数单生,不运动;菌落浅黄色,形状近圆形;利用H2+CO2或甲酸盐作为唯一碳源生长,不利用乙酸盐,对氯霉素非常敏感。该菌最适生长温度为55℃~65℃,最适NaCl浓度为0~2%。根据形态和生理生化特性及16S rDNA序列分析将其初步定为热自养甲烷热杆菌(Methanothermobacter thermautotrophicus)。添加RY3菌液与仅添加厌氧污泥作为接种物相比一周内可使达到最大产甲烷速率所需时间缩短三分之二,甲烷总产量提高约1.8倍。菌株SH4的生长pH范围5.5~9.5,其对酸碱具有良好的适应性,培养3天后,在初始pH值为6.0~8.0的培养基中甲烷产量相差不大,且基本达到最大产量。SH4革兰氏染色阳性,短杆状,多数单生,不运动;菌落近圆形,微黄;利用H2+CO2或甲酸盐作为唯一碳源生长,不利用乙酸盐,对氯霉素非常敏感。SH4最适生长pH 为7.0,最适生长温度为35℃,最适NaCl浓度为0~1.5%。实验表明,添加SH4菌液与仅添加厌氧污泥作为接种物相比可使产甲烷启动时间缩短三分之一,甲烷总产量亦有大幅提高。从形态和生理生化特征以及16S rDNA序列分析表明SH4为嗜树木甲烷短杆菌(Methanobrevibacter arboriphilus)。 以活性污泥为附着物,与培养基和菌种经搅拌后厌氧发酵可得产甲烷菌固体复合菌剂。固体复合菌剂的pH耐受范围为5.5~9.5,温度耐受范围为15℃~65℃,表明其对环境的适应性较强。以猪粪为底物进行厌氧发酵,接种复合菌剂进行试验,以接种实验室长期富集的产甲烷厌氧污泥作为对照,在20℃时,发酵甲烷浓度与对照基本一致,但每日产气量优于对照,第15天时接种复合菌剂的发酵瓶每日产气量是对照的1.59倍;50℃时达到最大甲烷含量所需时间比对照缩短三分之二,三周内总产气量约为对照的2.7倍,甲烷总产量约为2.8倍。以不加接种物为对照,接种复合菌剂20℃时发酵甲烷含量达到50%约需2周,对照2周内甲烷含量最高仅为4.3%;50℃时接种复合菌剂发酵仅需约1周甲烷含量便可达50%,对照则至少需要2周。 In this paper, high-temperature Methanogen RY3 and middle-temperature SH4 were isolated from Chengdu Longquan refuse landfill and Yibin paper mill. They could be used to make compound inoculum that producing methane with the existing Methanogens utilized different substrate. With using anaerobic activated sludge be solid fixture, the process had been designed to produce solid compound inoculum. Strain RY3 possessed excellent capacity of acid and alkali-tolerant. The pH-tolerant scale of RY3 was 5.5~10.5 and its optimum pH value for growth was 6.0~8.0. RY3 was G+, long-rod shape, monothetic and nonmotile, the colony was pale yellow with suborbicular-shape. Formate or H2+CO2 but not acetate was utilized by RY3 as sole C-source, and it was very sensitive to chloramphenicol. Besides, strain RY3 grew fastest at 55℃~65 and 0℃~2% NaCl. Characteristics of modality and physiology with sequence analysis of the 16s rDNA gene of strain RY3 preliminarily showed that it was Methanothermobacter thermautotrophicus. The experiments indicated that the time which began to produce methane with the highest velocity could be shortened two third by adding RY3 in one week, and the total methane production also was 1.8 times than before. Strain SH4 possessed wide scale of growing pH(5.5~9.5)and excellent ability of acclimatizing itself to acid-alkali. The methane production had no apparent difference among those cultivated in different initial pH(6.0~8.0)after three days and equaled to the maximum production basically. Cells of SH4 were G+, short-rod sharp, monothetic and nonmotile. The colony was pale yellow with suborbicular-shape. Formate or H2+CO2 but not acetate was utilized by SH4 as sole C-source, and it was very sensitive to chloramphenicol. Besides, it grew fastest at pH 7.0,55 ℃~65 and 0℃~2% NaCl concentration. The experiment indicated the time that began to produce methane could be shortening one third by adding SH4. And the total methane production also rose apparently. Characteristic of modality and physiology with sequence analysis of the 16S rDNA gene of strain SH4 demonstrated it was Methanobrevibacter arboriphilus. The activated sludge was utilized as fixture, mixed with culture medium and inocolum, that the solid compound inoculum could be produced by anaerobic fermentation. The compound inoculum could grow between pH 5.5~9.5, 15℃~65. It demonstrated the compound inoculum ha℃ve great ability of adapting to circumstance. In the experiment that making pig manure be substrate and taking the anaerobic sludge producing methane that cultured in long term in laboratory to be comparison, the concentration of methane in fermentation added compound inoculum almost equal to the comparison at 20℃, but the volume of gas production could be a little higher. The gas production everyday inoculated compound inoculum was 1.59 times to comparison. The time that the concentration of methane to maximum could be shortening by two third by adding compound inoculum, and the total gas production was 2.7 times to comprison while the total methane production was 2.8 times. If take the no inoculum be the comprasion, anaerobic fermentation added compound inoculum made the concentration of methane to 50% in 2 weeks but the comparison only to 4.3% at 20℃. The time that the concentration of methane to 50% by adding compound inoculum only need 1 week, but the comparison need 2 weeks at 50℃.
Resumo:
制革行业是轻工行业中仅次于造纸业的高耗水、重污染行业,作为劳动密集型行业,在解决大量人口就业问题的同时,也对所在地区环境造成了严重污染。目前我国制革行业每年排放废水8,000~12,000万吨,废水中含铬约3,500 t,SS为1.2×105 t,COD为1.8×105 t,BOD为7×104 t,对水体污染严重。 本研究在对厌氧酸化工艺进行研究、一级好氧处理段进行工艺比选研究的基础上,获得了匀质调节—SBBR—BAF的生物处理工艺,并依托该工艺进行了生物强化处理的研究,考察了菌剂的强化运行效果及其处理水回用的可行性。 研究表明,在进水COD>3,000 mg/L,厌氧酸化具有很好的抗冲击作用,保证了好氧工艺出水COD<200 mg/L;在进水COD<3,000 mg/L,可只通过好氧处理实现出水COD<200 mg/L。厌氧酸化停留时间选择不当,会导致厌氧出水硫化物浓度升高,严重影响好氧系统,会使好氧活性污泥因中毒而解絮。 研究表明,当进水COD为2,000~2,500 mg/L,NH4+-N为130~146 mg/L时,COD、NH4+-N去除率SBBR分别为93.8%~96.6%和14.5%~55.9%,SBR分别为88.8%~94.9%和13%~50.7%,表明SBBR优于SBR。同时,研究发现SBBR污泥增长率为0.05 kgVSS/kgCOD,仅为SBR0.57 kgVSS/kgCOD的8.8%。此外,研究发现SBBR在停止运行后经3个运行周期可回复原油能力,而SBR池经9个周期培养也不能恢复,说明SBBR恢复能力明显优于SBR。 研究表明,以匀质调节—SBBR—BAF为主的制革废水处理工艺,出水水质稳定,进水COD 801~2,834 mg/L、NH4+-N 87~203 mg/L,出水COD<80 mg/L、NH4+-N<10 mg/L,基本达到中水回用标准;操作简单灵活,没有污泥回流系统,污泥产率低,污泥处理费用低;工艺基本不需要添加化学药剂,既节约成本、又避免了二次污染;两级生物膜使得该工艺具有很强的耐冲击负荷能力,特别适合制革废水水质水量波动大的特点。 研究表明,高效菌对系统的启动具有一定的促进作用,强化系统生物膜6天可以成熟,对照系统生物膜9天可以成熟。同时高效菌能加速COD降解,缩短停留时间,强化系统6~8 h可使COD<200 mg/L,对照系统8~10 h可使COD<200 mg/L。长期运行表明,强化系统的SBBR在COD和NH4+-N的去除率都优于对照系统的SBBR。最终出水COD强化系统平均为53 mg/L、对照系统为74 mg/L。在模拟循环过程中,强化系统均有更高的稳定性。可实现8次理论循环,而对照系统只能实现4次理论循环。 研究表明,通过合理的工艺设计,可以实现猪皮制革废水达到《污水综合排放标准GB8976-1996》一级标准,同时满足工厂部分用水要求。通过添加高效微生物,可提高生物处理系统处理能力,使处理水能够满足工厂的多次回用。 As a labour-intensive industry, tanning has created large amount of working opportunities as well as caused severe contamination to environment. And it is one of the highest water-consuming and polluting industry, only second to manufacturing. At present time, Chinese leather industry emits wastewater about 80,000,000~120,000,000 t annually, which contains chromium about 3,500 t, SS 1.2×105 t, COD 1.8×105 t, BOD 7×104 t and ambient riverhead has been polluted greatly. Based on the research of anaerobic acidification and comparison of SBBR and SBR, biotreatment process (Homogenization—SBBR—BAF) had been established to amend the disadvantages of traditional sewage treatment such as too much sludge, high cost of advanced treatment and NH4+-N can not reach the emission standard. Research on the bioaugmentation was also been carried out. Researches showed, when COD of influent was beyond 3,000 mg/L, anaerobic acidification could resist strong impact, thus COD of effluent was less than 200 mg/L; when COD of influent was less than 3,000 mg/L, only throughout aerobic sewage treatment could COD of effluent beless than 200 mg/L. False residence tiome of anaerobic acidification would lead to the higher effluent concentration of sulfide and disintegration of aerobic activated sludge. Researches showed SBBR worked a better than SBR: when influent between 2,000 and 2,500 mg/L, NH4+-N between 130 mg/L and 146 mg/L, COD, NH4+-N removal rate of SBBR was 93.3%~96.6%, 14.5%~55.9% respectively while COD, NH4+-N removal rate of SBR was 88.8%~94.9%, 13%~50.7% respectively. Sludge growth rate of SBBR was 8.8% of that of 0.05 kgVSS/kgCOD. Besides, SBBR could recovered after 3 operating periods while SBR worked no better after 9 operating periods.Therefore, SBBR excelled SBR. Researches showed, effluent quantity of tannery wastewater treatment process (Homogenization—SBBR—BAF) was stable. When COD of influent was between 801 and 2,834 mg/L, NH4+-N was between 87 mg/L and 203 mg/L, COD of effluent was less than 80 mg/L, NH4+-N was less than 10 mg/L, which achieved the standard of reuse. This biotreatment was featured in low cost, easy and flexible management, less sludge, no inverse sludge system. Besides, this technique required no chemical, which could lower the cost and avoid secondary pollution. Great resistant of impact due to two membranes and was suitable for tannery wastewater which was featured by fluctuation of influent quality and quantity. Researches showed effective microorganisms promotes the startup of the process.Biofilm in the bioaugmentation process matured with 6 days while biofilm in normal process matured with 9 days. Effective microorganisms could accelerate the degradation of COD and shorten the residence time. Aggrandizement system could make COD<200 mg/L with 6 to8 hours while cntrolling system could make COD<200 mg/L with 8 to 10 hours. Long-term operating shows that SBBR in the bioaugmentation system worked better than the normal system in the treatment of COD and NH4+-N. The average COC of effluent in bioaugmentation system was 53 mg/L, normal system was 74 mg/L. In the simulative circulation process,aggrandizement process, which could fulfill 8 times theoretical circulation, works more stably than controlling process which could only fulfill 4 times theoretical circulation. Researches showed that reasonable design could make the wastewater meet the first grade of discharging standard of National Integrated Wastewater Discharge Standard (GB8976-1996), and partially meet the demand of water using of the factory. Adding effective microorganisms could enhance the biotreatment and make the effluents reuse many times.
Resumo:
利用14MeV中子轰击天然钨靶,通过180,182,183,184,186W(n,2pxn)反应,产生铪的放射性同位素,以γ(X)谱学方法鉴别出铪,观测到了能量为75.2keV和88.7keV的2条新γ射线,测定其半衰期为(3.6±0.6)min。
Resumo:
目的:探讨胃肠道癌术后预防腹腔转移及肝转移的有效方法。方法:对157例胃肠道癌切除术后病人,随机分成术中腹腔温热灌洗及术后静脉微泵和置泵持续动脉灌注化疗组72例(简称治疗组),单纯静脉化疗组85例(简称对照组),并对其腹腔转移率、肝转移率及3年生存率进行对照研究。结果:治疗组腹腔转移率21.5%、肝脏转移率13.4%、3年生存率71.6%,对照组腹腔转移率41.2%、肝脏转移率22.6%、3年生存率47.5%。两组之间比较有显著性差异(P<0.05)。结论:术中腹腔温热灌洗及术后静脉微泵和置泵持续动脉灌注化疗,对胃肠道癌病人术后腹腔转移及肝转移有良好的防治作用。