968 resultados para Protozoa, Pathogenic
Resumo:
Erythrocytosis arises from a variety of pathogenic mechanisms. We sequenced a 256-bp region 3' to the erythropoietin (Epo) gene which included a 24- to 50-bp minimal hypoxia-responsive element spanning HIF-1- and HNF-4-binding sites in 12 patients with erythrocytosis and 4 normal subjects. Four polymorphisms were found, none of which affected the HIF-1-binding site, although one polymorphism was present in the HNF-4 consensus region. The data indicate that none of these polymorphisms cause erythrocytosis.
Resumo:
BACKGROUND AND PURPOSE:
Amyloid-ß (Aß) aggregation into synaptotoxic, prefibrillar oligomers is a major pathogenic event underlying the neuropathology of Alzheimer's disease (AD). The pharmacological and neuroprotective properties of a novel Aß aggregation inhibitor, SEN1269, were investigated on aggregation and cell viability and in test systems relevant to synaptic function and memory, using both synthetic Aß(1-42) and cell-derived Aß oligomers.
EXPERIMENTAL APPROACH:
Surface plasmon resonance studies measured binding of SEN1269 to Aß(1-42) . Thioflavin-T fluorescence and MTT assays were used to measure its ability to block Aß(1-42) -induced aggregation and reduction in cell viability. In vitro and in vivo long-term potentiation (LTP) experiments measured the effect of SEN1269 on deficits induced by synthetic Aß(1-42) and cell-derived Aß oligomers. Following i.c.v. administration of the latter, a complex (alternating-lever cyclic ratio) schedule of operant responding measured effects on memory in freely moving rats.
KEY RESULTS:
SEN1269 demonstrated direct binding to monomeric Aß(1-42) , produced a concentration-related blockade of Aß(1-42) aggregation and protected neuronal cell lines exposed to Aß(1-42) . In vitro, SEN1269 alleviated deficits in hippocampal LTP induced by Aß(1-42) and cell-derived Aß oligomers. In vivo, SEN1269 reduced the deficits in LTP and memory induced by i.c.v. administration of cell-derived Aß oligomers.
CONCLUSIONS AND IMPLICATIONS:
SEN1269 protected cells exposed to Aß(1-42) , displayed central activity with respect to reducing Aß-induced neurotoxicity and was neuroprotective in electrophysiological and behavioural models of memory relevant to Aß-induced neurodegeneration. It represents a promising lead for designing inhibitors of Aß-mediated synaptic toxicity as potential neuroprotective agents for treating AD.
Resumo:
Burkholderia species are extremely multidrug resistant, environmental bacteria with extraordinary bioremediation and biocontrol properties. At the same time, these bacteria cause serious opportunistic infections in vulnerable patient populations while some species can potentially be used as bioweapons. The complete DNA sequence of more than 10 Burkholderia genomes provides an opportunity to apply functional genomics to a collection of widely adaptable environmental bacteria thriving in diverse niches and establishing both symbiotic and pathogenic associations with many different organisms. However, extreme multidrug resistance hampers genetic manipulations in Burkholderia. We have developed and evaluated a mutagenesis system based on the homing endonuclease I-SceI to construct targeted, non-polar unmarked gene deletions in Burkholderia. Using the cystic fibrosis pathogen Burkholderia cenocepacia K56-2 as a model strain, we demonstrate this system allows for clean deletions of one or more genes within an operon and also the introduction of multiple deletions in the same strain. We anticipate this tool will have widespread environmental and biomedical applications, facilitating functional genomic studies and construction of safe strains for bioremediation and biocontrol, as well as clinical applications such as live vaccines for Burkholderia and other Gram-negative bacterial species.
Resumo:
A fast screening method was developed to assess the pathogenicity of a diverse collection of environmental and clinical Burkholderia cepacia complex isolates in the nematode Caenorhabditis elegans. The method was validated by comparison with the standard slow-killing assay. We observed that the pathogenicity of B. cepacia complex isolates in C. elegans was strain-dependent but species-independent. The wide range of observed pathogenic phenotypes agrees with the high degree of phenotypic variation among species of the B. cepacia complex and suggests that the taxonomic classification of a given strain within the complex cannot predict pathogenicity.
Resumo:
Mouse monoclonal antibodies (MAbs) were generated against a 76-kDa IutA receptor of pathogenic avian Escherichia coli 15972. Six of the eight IutA-specific MAbs isolated (AB1 to AB6) were shown to be directed toward membrane-exposed conformational epitopes, although they did not interfere with the uptake of ferric aerobactin and cloacin DF13 as assessed by competition experiments with purified ligands. The two remaining IutA MAbs (AB9 and AB10) recognized linear epitopes buried in the IutA molecule. The panel of IutA MAbs was used to characterize IutA variants occurring in strains of E. coli, Klebsiella pneumoniae, Enterobacter spp., and Shigella spp., resulting in the identification of four immunological groups of IutAs. MAb AB9 defined an epitope conserved in all IutA variants. In addition, the panel of IutA MAbs served to identify the presence of IutA in wild-type bacteria grown in the presence of diphenylamine to reduce the expression of O-specific polysaccharide.
Resumo:
GM-CSF is a potent proinflammatory cytokine that plays a pathogenic role in the CNS inflammatory disease experimental autoimmune encephalomyelitis. As IL-27 alleviates experimental autoimmune encephalomyelitis, we hypothesized that IL-27 suppresses GM-CSF expression by T cells. We found that IL-27 suppressed GM-CSF expression in CD4+ and CD8+ T cells in splenocyte and purified T cell cultures. IL-27 suppressed GM-CSF in Th1, but not Th17, cells. IL-27 also suppressed GM-CSF expression by human T cells in nonpolarized and Th1- but not Th17-polarized PBMC cultures. In vivo, IL-27p28 deficiency resulted in increased GM-CSF expression by CNS-infiltrating T cells during Toxoplasma gondii infection. Although in vitro suppression of GM-CSF by IL-27 was independent of IL-2 suppression, IL-10 upregulation, or SOCS3 signaling, we observed that IL-27-driven suppression of GM-CSF was STAT1 dependent. Our findings demonstrate that IL-27 is a robust negative regulator of GM-CSF expression in T cells, which likely inhibits T cell pathogenicity in CNS inflammation.
Resumo:
Diabetic retinopathy is one of the most common complications of diabetes and is a major cause of new blindness in the working-age population of developed countries. While the exact pathogenic basis of this condition remains ill defined, it is clear that hyperglycaemia is a critical factor in its aetiology. Protein kinase C (PKC) activation is one of the sequelae of hyperglycaemia and it is thought to play an important role in the development of diabetic complications. This review questions the currently held dogma that PKC stimulation in diabetes is solely mediated through the overproduction of palmitate and oleate enriched diacylglycerols. Blood glucose concentrations are closely tracked by changes in the levels of free fatty acids and these, in addition to oxidative stress, may account for the aberrant activation of PKCs in diabetes. Little is known about why PKCs fail to downregulate in diabetes and efforts should be directed towards acquiring such information. Considerable evidence implicates the PKCbeta isoform in the pathogenesis of diabetic retinopathy, but other isoforms may also be of relevance. In addition to PKCs, it is evident that novel diacyglycerol-activated non-kinase receptors could also play a role in the development of diabetic complications. Therapeutic agents have been developed to inhibit specific PKC isoforms and PKCbeta antagonists are currently undergoing clinical trials to test their toxicity and efficacy in suppressing diabetic complications. The likely impact of these drugs in the treatment of diabetic patients is considered.
Resumo:
The presenilins (PSs) were identified as causative genes in cases of early-onset familial Alzheimer's disease (AD) and current evidence indicates that PSs are part of the gamma-secretase complex responsible for proteolytic processing of type I membrane proteins. p75NTR, a common neurotrophin receptor, was shown to be subject to gamma-secretase processing. However, it is not clear if the p75NTR downstream signal is altered in response to gamma-secretase cleavage, and further there is a possibility that AD-related PS mutations may affect this cleavage, resulting in pathogenic alterations in signal transduction. In this study, we confirmed that p75NTR downstream signalling is altered by PS2 mutation or gamma-secretase inhibition in SHSY-5Y cells. The activity of the small GTPase RhoA is strongly affected by these treatments. This study demonstrates that gamma-secretase and PS2 play an important role in regulating neurotrophin signal transduction and either mutation of PS2 or inhibition of gamma-secretase disturbs this function.
Resumo:
The epsilon-4 allele of apolipoprotein E (APOE) is associated with increased risk of Alzheimer's disease (AD), but the pathogenic mechanism is unknown. The 5-repeat allele of a CGG repeat polymorphism in the 5' untranslated region of the very low-density lipoprotein receptor (VLDL-R) gene, a receptor for apoE, has been found to be associated with increased risk of AD in a Japanese population. Other groups have been unable to replicate this in American Caucasian populations. A case-control study utilizing a clinically well-defined group of late-onset AD patients (n = 108) and age- and sex-matched control subjects (n = 108) from Northern Ireland was performed to test this association in a relatively homogeneous population. The 9,9 genotype of the VLDL-R was found to be significantly increased in patients compared to controls (P = 0.003; Pcorr = 0.035), leading to an increased risk of AD to subjects with this genotype (OR = 3.9; 95% CI, 1.52-11.25). In contrast to results from the Japanese study, the 5-repeat allele was found to be significantly reduced in the patient group when compared to controls (P = 0.008; Pcorr = 0.047). The results from this study suggest that individuals who have the 9,9 genotype of the VLDL-R gene are at increased risk of AD in Northern Ireland.
Resumo:
BRCA1 encodes a tumour suppressor protein that plays pivotal roles in homologous recombination (HR) DNA repair, cell-cycle checkpoints, and transcriptional regulation. BRCA1 germline mutations confer a high risk of early-onset breast and ovarian cancer. In more than 80% of cases, tumours arising in BRCA1 germline mutation carriers are oestrogen receptor (ER)-negative; however, up to 15% are ER-positive. It has been suggested that BRCA1 ER-positive breast cancers constitute sporadic cancers arising in the context of a BRCA1 germline mutation rather than being causally related to BRCA1 loss-of-function. Whole-genome massively parallel sequencing of ER-positive and ER-negative BRCA1 breast cancers, and their respective germline DNAs, was used to characterize the genetic landscape of BRCA1 cancers at base-pair resolution. Only BRCA1 germline mutations, somatic loss of the wild-type allele, and TP53 somatic mutations were recurrently found in the index cases. BRCA1 breast cancers displayed a mutational signature consistent with that caused by lack of HR DNA repair in both ER-positive and ER-negative cases. Sequencing analysis of independent cohorts of hereditary BRCA1 and sporadic non-BRCA1 breast cancers for the presence of recurrent pathogenic mutations and/or homozygous deletions found in the index cases revealed that DAPK3, TMEM135, KIAA1797, PDE4D, and GATA4 are potential additional drivers of breast cancers. This study demonstrates that BRCA1 pathogenic germline mutations coupled with somatic loss of the wild-type allele are not sufficient for hereditary breast cancers to display an ER-negative phenotype, and has led to the identification of three potential novel breast cancer genes (ie DAPK3, TMEM135, and GATA4).
Resumo:
Host defense peptides (HDPs) are an evolutionarily conserved component of the innate immune response found in all living species. They possess antimicrobial activities against a broad range of organisms including bacteria, fungi, eukaryotic parasites, and viruses. HDPs also have the ability to enhance immune responses by acting as immunomodulators. We discovered a new family of HDPs derived from pathogenic helminth (worms) that cause enormous disease in animals and humans worldwide. The discovery of these peptides was based on their similar biochemical and functional characteristics to the human defense peptide LL-37. We propose that these new peptides modulate the immune response via molecular mimicry of mammalian HDPs thus providing a mechanism behind the anti-inflammatory properties of helminth infections.
Resumo:
The survival and growth of populations of the obligately anaerobic pathogenic bacterium Bacteroides fragilis enriched for large capsules (LCs), small capsules (SCs) or an electron-dense layer (EDL; non-capsulate by light microscopy) were examined in a mouse model of infection over a minimum period of 20 d. Chambers which allowed the influx of leukocytes, but not the efflux of bacteria, were implanted in the mouse peritoneal cavity. The LC and EDL populations consistently attained viable cell densities of the order of 10(8)-10(9) c.f.u. ml-1 within 24 h, whereas the SC population did not. However, after 3 d, all three bacterial populations maintained total viable numbers of 10(8)-10(9) c.f.u. ml-1 within the chambers. LC expression was selected against within 24 h in the model, the populations becoming non-capsulate by light microscopy, whereas in the SC population expression of the SC was retained by approximately 90% of the population. The EDL population remained non-capsulate by light microscopy throughout. Lymphocytes infiltrated the chambers to an equal extent for all three B. fragilis populations and at approximately 1000 times higher concentration than chambers which contained only quarter-strength Ringer's solution. The presence of neutrophils within the chambers did not cause a decrease in the total viable bacterial count. Each population elicited antibodies specific for outer-membrane proteins and polysaccharide, as detected by immunoblotting, which cross-reacted with the other populations. Differences were observed in the immunogenicity of the outer-membrane proteins within the three populations. Neutrophils were initially the predominant cell type in the chambers, but as the total leukocyte count increased with incubation time, neutrophils were outnumbered by other leukocytes.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The haemagglutinating and enzymic activities of the obligately anaerobic pathogenic bacterium Bacteroides fragilis were examined. Outer membrane vesicles are released from the surface of B. fragilis. They can be detected by electron microscopy in ultrathin sections and bacterial suspensions after negative staining. Electron microscopy and immunogold labelling with a MAb specific for surface polysaccharide of B. fragilis confirmed that the vesicles carried outer membrane associated epitopes. The haemagglutinating activity of whole cells from populations of B. fragilis strains NCTC9343, BE3 and LS66 enriched by Percoll density gradient centrifugation for a large capsule (LC), electron dense layer (EDL); non-capsulate by light microscopy) and outer membrane vesicles (OMV) which had been purified by centrifugation from EDL-enriched populations were compared using human and horse erythrocytes. The enzymic activity of OMV, LC- and EDL-enriched populations, as detected by the API ZYM kit, was compared for strains NCTC 9343 and BE3. Purified OMV from the strains examined exhibited both haemagglutinating and enzymatic activity. Haemagglutination by the EDL-enriched population was sensitive to treatment with sodium periodate. The LC-enriched population haemagglutinated only after ultrasonic removal of the capsule. This indicates that the LC masks a haemagglutinin. The results suggest a potential role for OMV in the virulence of B. fragilis.
Resumo:
Burkholderia cenocepacia is a Gram-negative aerobic bacterium that belongs to a group of opportunistic pathogens displaying diverse environmental and pathogenic lifestyles. B. cenocepacia is known for its ability to cause lung infections in people with cystic fibrosis and it possesses a large 8?Mb multireplicon genome encoding a wide array of pathogenicity and fitness genes. Transcriptomic profiling across nine growth conditions was performed to identify the global gene expression changes made when B. cenocepacia changes niches from an environmental lifestyle to infection. In comparison to exponential growth, the results demonstrated that B. cenocepacia changes expression of over one-quarter of its genome during conditions of growth arrest, stationary phase and surprisingly, under reduced oxygen concentrations (6% instead of 20.9% normal atmospheric conditions). Multiple virulence factors are upregulated during these growth arrest conditions. A unique discovery from the comparative expression analysis was the identification of a distinct, co-regulated 50-gene cluster that was significantly upregulated during growth under low oxygen conditions. This gene cluster was designated the low-oxygen-activated (lxa) locus and encodes six universal stress proteins and proteins predicted to be involved in metabolism, transport, electron transfer and regulation. Deletion of the lxa locus resulted in B. cenocepacia mutants with aerobic growth deficiencies in minimal medium and compromised viability after prolonged incubation in the absence of oxygen. In summary, transcriptomic profiling of B. cenocepacia revealed an unexpected ability of aerobic Burkholderia to persist in the absence of oxygen and identified the novel lxa locus as key determinant of this important ecophysiological trait.
Resumo:
Pathogenic bacteria may modify their surface to evade the host innate immune response. Yersinia enterocolitica modulates its lipopolysaccharide (LPS) lipid A structure, and the key regulatory signal is temperature. At 21°C, lipid A is hexa-acylated and may be modified with aminoarabinose or palmitate. At 37°C, Y. enterocolitica expresses a tetra-acylated lipid A consistent with the 3'-O-deacylation of the molecule. In this work, by combining genetic and mass spectrometric analysis, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure observed at 37°C. Western blot analyses indicate that LpxR exhibits latency at 21°C, deacylation of lipid A is not observed despite the expression of LpxR in the membrane. Aminoarabinose-modified lipid A is involved in the latency. 3-D modelling, docking and site-directed mutagenesis experiments showed that LpxR D31 reduces the active site cavity volume so that aminoarabinose containing Kdo(2)-lipid A cannot be accommodated and, therefore, not deacylated. Our data revealed that the expression of lpxR is negatively controlled by RovA and PhoPQ which are necessary for the lipid A modification with aminoarabinose. Next, we investigated the role of lipid A structural plasticity conferred by LpxR on the expression/function of Y. enterocolitica virulence factors. We present evidence that motility and invasion of eukaryotic cells were reduced in the lpxR mutant grown at 21°C. Mechanistically, our data revealed that the expressions of flhDC and rovA, regulators controlling the flagellar regulon and invasin respectively, were down-regulated in the mutant. In contrast, the levels of the virulence plasmid (pYV)-encoded virulence factors Yops and YadA were not affected in the lpxR mutant. Finally, we establish that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by pYV-encoded YopP and the reduced activation of the LPS receptor by a LpxR-dependent deacylated LPS.