950 resultados para Protein Structure, Quaternary


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of the large proteoglycan present in the bullfrog epiphyseal cartilage was studied by immunochemical and biochemical methods. The isolated monomer showed a polydisperse behavior on Sepharose CL2B, with a peak at Kav = 0.14. Chondroitin sulfate chains were identified by HPLC analysis of the products formed by chondroitinase digestion and mercuric acetate treatment. These chains have approximately 38 disaccharides, a Di45:Di68 ratio of 1.6 and GalNAc4S + GalNAc4,6S are the main non-reducing terminals. Keratan sulfate was identified by the use of two monoclonal antibodies in Western blots after chondroitinase ABC treatment. A keratan sulfate-rich region (~110 kDa) was isolated by sequential treatment with chondroitinase ABC and proteases. We also employed antibodies in Western blotting experiments and showed that the full length deglycosylated core protein is about 300 kDa after SDS-PAGE. Domain-specific antibodies revealed the presence of immunoreactive sites corresponding to G1/G2 and G3 globular domains and the characterization of this large proteoglycan as aggrecan. The results indicate the high conservation of the aggrecan domain structure in this lower vertebrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pressure behavior of proteins may be summarized as a the pressure-induced disordering of their structures. This thermodynamic parameter has effects on proteins that are similar but not identical to those induced by temperature, the other thermodynamic parameter. Of particular importance are the intermolecular interactions that follow partial protein unfolding and that give rise to the formation of fibrils. Because some proteins do not form fibrils under pressure, these observations can be related to the shape of the stability diagram. Weak interactions which are differently affected by hydrostatic pressure or temperature play a determinant role in protein stability. Pressure acts on the 2º, 3º and 4º structures of proteins which are maintained by electrostatic and hydrophobic interactions and by hydrogen bonds. We present some typical examples of how pressure affects the tertiary structure of proteins (the case of prion proteins), induces unfolding (ataxin), is a convenient tool to study enzyme dissociation (enolase), and provides arguments to understand the role of the partial volume of an enzyme (butyrylcholinesterase). This approach may have important implications for the understanding of the basic mechanism of protein diseases and for the development of preventive and therapeutic measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yeast soluble proteins were fractionated by calmodulin-agarose affinity chromatography and the Ca2+/calmodulin-binding proteins were analyzed by SDS-PAGE. One prominent protein of 66 kDa was excised from the gel, digested with trypsin and the masses of the resultant fragments were determined by MALDI/MS. Twenty-one of 38 monoisotopic peptide masses obtained after tryptic digestion were matched to the heat shock protein Ssb1/Hsp75, covering 37% of its sequence. Computational analysis of the primary structure of Ssb1/Hsp75 identified a unique potential amphipathic alpha-helix in its N-terminal ATPase domain with features of target regions for Ca2+/calmodulin binding. This region, which shares 89% similarity to the experimentally determined calmodulin-binding domain from mouse, Hsc70, is conserved in near half of the 113 members of the HSP70 family investigated, from yeast to plant and animals. Based on the sequence of this region, phylogenetic analysis grouped the HSP70s in three distinct branches. Two of them comprise the non-calmodulin binding Hsp70s BIP/GR78, a subfamily of eukaryotic HSP70 localized in the endoplasmic reticulum, and DnaK, a subfamily of prokaryotic HSP70. A third heterogeneous group is formed by eukaryotic cytosolic HSP70s containing the new calmodulin-binding motif and other cytosolic HSP70s whose sequences do not conform to those conserved motif, indicating that not all eukaryotic cytosolic Hsp70s are target for calmodulin regulation. Furthermore, the calmodulin-binding domain found in eukaryotic HSP70s is also the target for binding of Bag-1 - an enhancer of ADP/ATP exchange activity of Hsp70s. A model in which calmodulin displaces Bag-1 and modulates Ssb1/Hsp75 chaperone activity is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Almost identical polyglutamine-containing proteins with unknown structures have been found in human, mouse and rat genomes (GenBank AJ277365, AF525300, AY879229). We infer that an identical new gene (RING) finger domain of real interest is located in each C-terminal segment. A three-dimensional (3-D) model was generated by remote homology modeling and the functional implications are discussed. The model consists of 65 residues from terminal position 707 to 772 of the human protein with a total length of 796 residues. The 3-D model predicts a ubiquitin-protein ligase (E3) as a binding site for ubiquitin-conjugating enzyme (E2). Both enzymes are part of the ubiquitin pathway to label unwanted proteins for subsequent enzymatic degradation. The molecular contact specificities are suggested for both the substrate recognition and the residues at the possible E2-binding surface. The predicted structure, of a ubiquitin-protein ligase (E3, enzyme class number 6.3.2.19, CATH code 3.30.40.10.4) may contribute to explain the process of ubiquitination. The 3-D model supports the idea of a C3HC4-RING finger with a partially new pattern. The putative E2-binding site is formed by a shallow hydrophobic groove on the surface adjacent to the helix and one zinc finger (L722, C739, P740, P741, R744). Solvent-exposed hydrophobic amino acids lie around both zinc fingers (I717, L722, F738, or P765, L766, V767, V733, P734). The 3-D structure was deposited in the protein databank theoretical model repository (2B9G, RCSB Protein Data Bank, NJ).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertebrate hemoglobin, contained in erythrocytes, is a globular protein with a quaternary structure composed of 4 globin chains (2 alpha and 2 beta) and a prosthetic group named heme bound to each one. Having myoglobin as an ancestor, hemoglobin acquired the capacity to respond to chemical stimuli that modulate its function according to tissue requirements for oxygen. Fish are generally submitted to spatial and temporal O2 variations and have developed anatomical, physiological and biochemical strategies to adapt to the changing environmental gas availability. Structurally, most fish hemoglobins are tetrameric; however, those from some species such as lamprey and hagfish dissociate, being monomeric when oxygenated and oligomeric when deoxygenated. Fish blood frequently possesses several hemoglobins; the primary origin of this finding lies in the polymorphism that occurs in the globin loci, an aspect that may occasionally confer advantages to its carriers or even be a harmless evolutionary remnant. On the other hand, the functional properties exhibit different behaviors, ranging from a total absence of responses to allosteric regulation to drastic ones, such as the Root effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionotropic glutamate receptors are major excitatory receptors in the central nervous system and also have a far reaching influence in other areas of the body. Their modular nature has allowed for the isolation of the ligand-binding domain and for subsequent structural studies using a variety of spectroscopic techniques. This review will discuss the role of specific ligand:protein interactions in mediating activation in the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype of glutamate receptors as established by various spectroscopic investigations of the GluR2 and GluR4 subunits of this receptor. Specifically, this review will provide an introduction to the insight gained from X-ray crystallography and nuclear magnetic resonance investigations and then go on to focus on studies utilizing vibrational spectroscopy and fluorescence resonance energy transfer to study the behavior of the isolated ligand-binding domain in solution and discuss the importance of specific ligand:protein interactions in the mechanism of receptor activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Griscelli syndrome (GS) is a rare autosomal recessive disorder caused by mutation in the MYO5A (GS1, Elejalde), RAB27A (GS2) or MLPH (GS3) genes. Typical features of all three subtypes of this disease include pigmentary dilution of the hair and skin and silvery-gray hair. Whereas the GS3 phenotype is restricted to the pigmentation dysfunction, GS1 patients also show primary neurological impairment and GS2 patients have severe immunological deficiencies that lead to recurrent infections and hemophagocytic syndrome. We report here the diagnosis of GS2 in 3-year-old twin siblings, with silvery-gray hair, immunodeficiency, hepatosplenomegaly and secondary severe neurological symptoms that culminated in multiple organ failure and death. Light microscopy examination of the hair showed large, irregular clumps of pigments characteristic of GS. A homozygous nonsense mutation, C-T transition (c.550C>T), in the coding region of the RAB27A gene, which leads to a premature stop codon and prediction of a truncated protein (R184X), was found. In patient mononuclear cells, RAB27A mRNA levels were the same as in cells from the parents, but no protein was detected. In addition to the case report, we also present an updated summary on the exon/intron organization of the human RAB27A gene, a literature review of GS2 cases, and a complete list of the human mutations currently reported in this gene. Finally, we propose a flow chart to guide the early diagnosis of the GS subtypes and Chédiak-Higashi syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental and clinical evidence suggests that angiotensin II (AII) participates in renal development. Renal AII content is several-fold higher in newborn rats and mice than in adult animals. AII receptors are also expressed in higher amounts in the kidneys of newborn rats. The kidneys of fetuses whose mother received a type 1 AII receptor (AT1) antagonist during gestation present several morphological alterations. Mutations in genes that encode components of the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Morphological changes were detected in the kidneys of 3-week-old angiotensin-deficient mice. Mitogen-activated protein kinases (MAPKs) are important mediators that transduce extracellular stimuli to intracellular responses. The MAPK family comprises three major subgroups, namely extracellular signal-regulated protein kinase (ERK), c-jun N-terminal kinases (JNK), and p38 MAPK (p38). Important events in renal growth during nephrogenesis such as cellular proliferation and differentiation accompanied by apoptosis on a large scale can be mediated by MAPK pathways. A decrease in glomerulus number was observed in embryos cultured for 48 and 120 h with ERK or p38 inhibitors. Many effects of AII are mediated by MAPK pathways. Treatment with losartan during lactation provoked changes in renal function and structure associated with alterations in AT1 and type 2 AII (AT2) receptors and p-JNK and p-p38 expression in the kidney. Several studies have shown that AII and MAPKs play an important role in renal development. However, the relationship between the effects of AII and MAPK activation on renal development is still unclear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To illustrate the construction of precursor complementary DNAs, we isolated mRNAs from whole venom samples. After reverse transcription polymerase chain reaction (RT-PCR), we amplified the cDNA coding for a neurotoxic protein, phospholipase A2 D49 (PLA2 D49), from the venom of Crotalus durissus collilineatus (Cdc PLA2). The cDNA encoding Cdc PLA2 from whole venom was sequenced. The deduced amino acid sequence of this cDNA has high overall sequence identity with the group II PLA2 protein family. Cdc PLA2 has 14 cysteine residues capable of forming seven disulfide bonds that characterize this group of PLA2 enzymes. Cdc PLA2 was isolated using conventional Sephadex G75 column chromatography and reverse-phase high performance liquid chromatography (RP-HPLC). The molecular mass was estimated using matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. We tested the neuromuscular blocking activities on chick biventer cervicis neuromuscular tissue. Phylogenetic analysis of Cdc PLA2 showed the existence of two lines of N6-PLA2, denominated F24 and S24. Apparently, the sequences of the New World’s N6-F24-PLA2 are similar to those of the agkistrodotoxin from the Asian genus Gloydius. The sequences of N6-S24-PLA2 are similar to the sequence of trimucrotoxin from the genus Protobothrops, found in the Old World.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maintenance of cell homeostasis and regulation of cell proliferation depend importantly on regulating the process of protein synthesis. Many disease states arise when disregulation of protein synthesis occurs. This review focuses on mechanisms of translational control and how disregulation results in cell malignancy. Most translational controls occur during the initiation phase of protein synthesis, with the initiation factors being the major target of regulation through their phosphorylation. In particular, the recruitment of mRNAs through the m7G-cap structure and the binding of the initiator methionyl-tRNAi are frequent targets. However, translation, especially of specific mRNAs, may also be regulated by sequestration into processing bodies or stress granules, by trans-acting proteins or by microRNAs. When the process of protein synthesis is hyper-activated, weak mRNAs are translated relatively more efficiently, leading to an imbalance of cellular proteins that promotes cell proliferation and malignant transformation. This occurs, for example, when the cap-binding protein, eIF4E, is overexpressed, or when the methionyl-tRNAi-binding factor, eIF2, is too active. In addition, enhanced activity of eIF3 contributes to oncogenesis. The importance of the translation initiation factors as regulators of protein synthesis and cell proliferation makes them potential therapeutic targets for the treatment of cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myocardial ischemic preconditioning upregulated protein 1 (Mipu1) is a newly discovered upregulated gene produced in rats during the myocardial ischemic preconditioning process. Mipu1 cDNA contains a 1824-base pair open reading frame and encodes a 608 amino acid protein with an N-terminal Krüppel-associated box (KRAB) domain and classical zinc finger C2H2 motifs in the C-terminus. Mipu1 protein is located in the cell nucleus. Recent studies found that Mipu1 has a protective effect on the ischemia-reperfusion injury of heart, brain, and other organs. As a nuclear factor, Mipu1 may perform its protective function through directly transcribing and repressing the expression of proapoptotic genes to repress cell apoptosis. In addition, Mipu1 also plays an important role in regulating the gene expression of downstream inflammatory mediators by inhibiting the activation of activator protein-1 and serum response element.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac remodeling involves changes in heart shape, size, structure, and function after injury to the myocardium. The proinflammatory adaptor protein myeloid differentiation protein 88 (MyD88) contributes to cardiac remodeling. To investigate whether excessive MyD88 levels initiate spontaneous cardiac remodeling at the whole-organism level, we generated a transgenic MyD88 mouse model with a cardiac-specific promoter. MyD88 mice (male, 20-30 g, n=∼80) were born at the expected Mendelian ratio and demonstrated similar morphology of the heart and cardiomyocytes with that of wild-type controls. Although heart weight was unaffected, cardiac contractility of MyD88 hearts was mildly reduced, as shown by echocardiographic examination, compared with wild-type controls. Moreover, the cardiac dysfunction phenotype was associated with elevation of ANF and BNP expression. Collectively, our data provide novel evidence of the critical role of balanced MyD88 signaling in maintaining physiological function in the adult heart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is important to understand how changes in the product formulation can modify its characteristics. Thus, the objective of this study was to investigate the effect of whey protein concentrate (WPC) on the texture of fat-free dairy desserts. The correlation between instrumental and sensory measurements was also investigated. Four formulations were prepared with different WPC concentrations (0, 1.5, 3.0, and 4.5 wt. (%)) and were evaluated using the texture profile analysis (TPA) and rheology. Thickness was evaluated by nine trained panelists. Formulations containing WPC showed higher firmness, elasticity, chewiness, and gumminess and clearly differed from the control as indicated by principal component analysis (PCA). Flow behavior was characterized as time-dependent and pseudoplastic. Formulation with 4.5% WPC at 10 °C showed the highest thixotropic behavior. Experimental data were fitted to Herschel-Bulkley model. The addition of WPC contributed to the texture of the fat-free dairy dessert. The yield stress, apparent viscosity, and perceived thickness in the dairy desserts increased with WPC concentration. The presence of WPC promotes the formation of a stronger gel structure as a result of protein-protein interactions. The correlation between instrumental parameters and thickness provided practical results for food industries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of protein lupine isolate (LI) and addition of brea gum (BG) on a basic bread formulation is described. The major objective of this research was to evaluate the influence of the addition of LI on the quality and quantity of the proteins of fresh bread with BG. Protein quality was determinate by the Chemical Score method corrected for protein digestibility (CSCD%). The bread dough characteristics were determined by farinograph and alveograph. Fresh bread characterization was performed by measuring the physical parameters and evaluating the crumb structure. The effect of LI and BG on available lysine, the loss of available lysine ratio, and the chemical composition of the breads were also determined. The addition of LI on the bread formulation improved the protein content and the CSCD% of lysine. The dough with LI was less resistant to prolonged kneading and less manageable. With BG addition, the dough became stickier. The quality of fresh bread was affected by the addition of LI: the fresh bread had lower specific volume and more heterogeneous crumbs than that of the control group. The addition of BG did not influence the quality of the bread made with the mixed flour, but it had a positive effect on the loss of available lysine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Significant initiatives exist within the global food market to search for new, alternative protein sources with better technological, functional, and nutritional properties. Lima bean (Phaseolus lunatus L.) protein isolate was hydrolyzed using a sequential pepsin-pancreatin enzymatic system. Hydrolysis was performed to produce limited (LH) and extensive hydrolysate (EH), each with different degrees of hydrolysis (DH). The effects of hydrolysis were evaluated in vitro in both hydrolysates based on structural, functional and bioactive properties. Structural properties analyzed by electrophoretic profile indicated that LH showed residual structures very similar to protein isolate (PI), although composed of mixtures of polypeptides that increased hydrophobic surface and denaturation temperature. Functionality of LH was associated with amino acid composition and hydrophobic/hydrophilic balance, which increased solubility at values close to the isoelectric point. Foaming and emulsifying activity index values were also higher than those of PI. EH showed a structure composed of mixtures of polypeptides and peptides of low molecular weight, whose intrinsic hydrophobicity and amino acid profile values were associated with antioxidant capacity, as well as inhibiting angiotensin-converting enzyme. The results obtained indicated the potential of Phaseolus lunatus hydrolysates to be incorporated into foods to improve techno-functional properties and impart bioactive properties.