973 resultados para Propagation mode
Resumo:
Fifteen cooperative fish rearing and planting programs for salmon and steelhead were active from July 1, 1995 through June 30, 1996. For all programs, 134,213 steelhead trout,(Oncorhynchus mykiss), 7,742,577 chinook salmon,(~ tshawytscha),and 25,075 coho salmon(~ kisutch) were planted. (PDF contains 26 pages.)
Resumo:
Fourteen cooperative fish rearing and planting programs for salmon and steelhead were active from July 1, 1996 through June 30, 1997. For all programs, 208,922 steelhead trout, (Oncorhynchus mykiss), 10,334,457 chinook salmon,(O. tshawytscha),and 60,681 coho salmon(O. kisutch) were planted. (PDF contains 24 pages.)
Resumo:
In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. Neuronal classification has been a difficult problem because it is unclear what a neuronal cell class actually is and what are the best characteristics are to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological or molecular characteristics, when applied to selected datasets, have provided quantitative and unbiased identification of distinct neuronal subtypes. However, better and more robust classification methods are needed for increasingly complex and larger datasets. We explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. In fact, using a combined anatomical/physiological dataset, our algorithm differentiated parvalbumin from somatostatin interneurons in 49 out of 50 cases. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits.
Resumo:
The efficiency of the wind power conversions systems can be greatly improved using an appropriate control algorithm. In this work, a sliding mode control for variable speed wind turbine that incorporates a doubly fed induction generator is described. The electrical system incorporates a wound rotor induction machine with back-to-back three phase power converter bridges between its rotor and the grid. In the presented design the so-called vector control theory is applied, in order to simplify the electrical equations. The proposed control scheme uses stator flux-oriented vector control for the rotor side converter bridge control and grid voltage vector control for the grid side converter bridge control. The stability analysis of the proposed sliding mode controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. Finally simulated results show, on the one hand, that the proposed controller provides high-performance dynamic characteristics, and on the other hand, that this scheme is robust with respect to the uncertainties that usually appear in the real systems.
Resumo:
A sliding mode position control for high-performance real-time applications of induction motors in developed in this work. The design also incorporates a simple flux estimator in order to avoid the flux sensors. Then, the proposed control scheme presents a low computational cost and therefore can be implemented easily in a real-time applications using a low cost DSP-processor. The stability analysis of the controller under parameter uncertainties and load disturbances in provided using Lyapunov stability theory. Finally, simulated and experimental results show that the proposed controller with the proposed observer provides a good trajectory tracking and that this scheme is robust with respect to plant parameter variations and external load disturbances.