991 resultados para Préville, 1721-1799.
Resumo:
An artificial muscle with strength and speed equal to that of a human muscle may soon be possible. Polymer gels exhibit abrubt volume changes in response to variations in their external conditions -- shrinking or swelling up to 1000 times their original volume. Through the conversion of chemical or electrical energy into mechanical work, a number of devices have already been constructed which produce forces up to 100N/cm2 and contraction rates on the order of a second. Through the promise of an artificial muscle is real, many fundamental physical and engineering questions remain before the extent or limit of these devices is known.
Resumo:
A dynamic model and control system of an artificial muscle is presented. The artificial muscle is based on a contractile polymer gel which undergoes abrupt volume changes in response to variations in external conditions. The device uses an acid-base reaction to directly convert chemical to mechanical energy. A nonlinear sliding mode control system is proposed to track desired joint trajectories of a single link controlled by two antagonist muscles. Both the model and controller were implemented and produced acceptable tracking performance at 2Hz.
Resumo:
The recognition of objects with smooth bounding surfaces from their contour images is considerably more complicated than that of objects with sharp edges, since in the former case the set of object points that generates the silhouette contours changes from one view to another. The "curvature method", developed by Basri and Ullman [1988], provides a method to approximate the appearance of such objects from different viewpoints. In this paper we analyze the curvature method. We apply the method to ellipsoidal objects and compute analytically the error obtained for different rotations of the objects. The error depends on the exact shape of the ellipsoid (namely, the relative lengths of its axes), and it increases a sthe ellipsoid becomes "deep" (elongated in the Z-direction). We show that the errors are usually small, and that, in general, a small number of models is required to predict the appearance of an ellipsoid from all possible views. Finally, we show experimentally that the curvature method applies as well to objects with hyperbolic surface patches.
Resumo:
The task of shape recovery from a motion sequence requires the establishment of correspondence between image points. The two processes, the matching process and the shape recovery one, are traditionally viewed as independent. Yet, information obtained during the process of shape recovery can be used to guide the matching process. This paper discusses the mutual relationship between the two processes. The paper is divided into two parts. In the first part we review the constraints imposed on the correspondence by rigid transformations and extend them to objects that undergo general affine (non rigid) transformation (including stretch and shear), as well as to rigid objects with smooth surfaces. In all these cases corresponding points lie along epipolar lines, and these lines can be recovered from a small set of corresponding points. In the second part of the paper we discuss the potential use of epipolar lines in the matching process. We present an algorithm that recovers the correspondence from three contour images. The algorithm was implemented and used to construct object models for recognition. In addition we discuss how epipolar lines can be used to solve the aperture problem.
Resumo:
Earlier, we introduced a direct method called fixation for the recovery of shape and motion in the general case. The method uses neither feature correspondence nor optical flow. Instead, it directly employs the spatiotemporal gradients of image brightness. This work reports the experimental results of applying some of our fixation algorithms to a sequence of real images where the motion is a combination of translation and rotation. These results show that parameters such as the fization patch size have crucial effects on the estimation of some motion parameters. Some of the critical issues involved in the implementaion of our autonomous motion vision system are also discussed here. Among those are the criteria for automatic choice of an optimum size for the fixation patch, and an appropriate location for the fixation point which result in good estimates for important motion parameters. Finally, a calibration method is described for identifying the real location of the rotation axis in imaging systems.
Resumo:
In many different spatial discrimination tasks, such as in determining the sign of the offset in a vernier stimulus, the human visual system exhibits hyperacuity-level performance by evaluating spatial relations with the precision of a fraction of a photoreceptor"s diameter. We propose that this impressive performance depends in part on a fast learning process that uses relatively few examples and occurs at an early processing stage in the visual pathway. We show that this hypothesis is plausible by demonstrating that it is possible to synthesize, from a small number of examples of a given task, a simple (HyperBF) network that attains the required performance level. We then verify with psychophysical experiments some of the key predictions of our conjecture. In particular, we show that fast timulus-specific learning indeed takes place in the human visual system and that this learning does not transfer between two slightly different hyperacuity tasks.
Resumo:
The blocking probability of a network is a common measure of its performance. There exist means of quickly calculating the blocking probabilities of Banyan networks; however, because Banyan networks have no redundant paths, they are not inherently fault-tolerant, and so their use in large-scale multiprocessors is problematic. Unfortunately, the addition of multiple paths between message sources and sinks in a network complicates the calculation of blocking probabilities. A methodology for exact calculation of blocking probabilities for small networks with redundant paths is presented here, with some discussion of its potential use in approximating blocking probabilities for large networks with redundant paths.
Resumo:
When we reason about change over time, causation provides an implicit preference: we prefer sequences of situations in which one situation leads causally to the next, rather than sequences in which one situation follows another at random and without causal connections. In this paper, we explore the problem of temporal reasoning --- reasoning about change over time --- and the crucial role that causation plays in our intuitions. We examine previous approaches to temporal reasoning, and their shortcomings, in light of this analysis. We propose a new system for causal reasoning, motivated action theory, which builds upon causation as a crucial preference creterion. Motivated action theory solves the traditional problems of both forward and backward reasoning, and additionally provides a basis for a new theory of explanation.
Resumo:
This paper presents a simple, sound, complete, and systematic algorithm for domain independent STRIPS planning. Simplicity is achieved by starting with a ground procedure and then applying a general and independently verifiable, lifting transformation. Previous planners have been designed directly as lifted procedures. Our ground procedure is a ground version of Tate's NONLIN procedure. In Tate's procedure one is not required to determine whether a prerequisite of a step in an unfinished plan is guarnateed to hold in all linearizations. This allows Tate"s procedure to avoid the use of Chapman"s modal truth criterion. Systematicity is the property that the same plan, or partial plan, is never examined more than once. Systematicity is achieved through a simple modification of Tate's procedure.
Resumo:
The future of the software industry is today being shaped in the courtroom. Most discussions of intellectual property to date, however, have been frames as debates about how the existing law --- promulgated long before the computer revolution --- should be applied to software. This memo is a transcript of a panel discussion on what forms of legal protection should apply to software to best serve both the industry and society in general. After addressing that question we can consider what laws would bring this about.
Resumo:
Similarity measurements between 3D objects and 2D images are useful for the tasks of object recognition and classification. We distinguish between two types of similarity metrics: metrics computed in image-space (image metrics) and metrics computed in transformation-space (transformation metrics). Existing methods typically use image and the nearest view of the object. Example for such a measure is the Euclidean distance between feature points in the image and corresponding points in the nearest view. (Computing this measure is equivalent to solving the exterior orientation calibration problem.) In this paper we introduce a different type of metrics: transformation metrics. These metrics penalize for the deformatoins applied to the object to produce the observed image. We present a transformation metric that optimally penalizes for "affine deformations" under weak-perspective. A closed-form solution, together with the nearest view according to this metric, are derived. The metric is shown to be equivalent to the Euclidean image metric, in the sense that they bound each other from both above and below. For Euclidean image metric we offier a sub-optimal closed-form solution and an iterative scheme to compute the exact solution.
Resumo:
In the first part of this paper we show that a new technique exploiting 1D correlation of 2D or even 1D patches between successive frames may be sufficient to compute a satisfactory estimation of the optical flow field. The algorithm is well-suited to VLSI implementations. The sparse measurements provided by the technique can be used to compute qualitative properties of the flow for a number of different visual tsks. In particular, the second part of the paper shows how to combine our 1D correlation technique with a scheme for detecting expansion or rotation ([5]) in a simple algorithm which also suggests interesting biological implications. The algorithm provides a rough estimate of time-to-crash. It was tested on real image sequences. We show its performance and compare the results to previous approaches.
Resumo:
A method for localization and positioning in an indoor environment is presented. The method is based on representing the scene as a set of 2D views and predicting the appearances of novel views by linear combinations of the model views. The method is accurate under weak perspective projection. Analysis of this projection as well as experimental results demonstrate that in many cases it is sufficient to accurately describe the scene. When weak perspective approximation is invalid, an iterative solution to account for the perspective distortions can be employed. A simple algorithm for repositioning, the task of returning to a previously visited position defined by a single view, is derived from this method.
Resumo:
Model-based object recognition commonly involves using a minimal set of matched model and image points to compute the pose of the model in image coordinates. Furthermore, recognition systems often rely on the "weak-perspective" imaging model in place of the perspective imaging model. This paper discusses computing the pose of a model from three corresponding points under weak-perspective projection. A new solution to the problem is proposed which, like previous solutins, involves solving a biquadratic equation. Here the biquadratic is motivate geometrically and its solutions, comprised of an actual and a false solution, are interpreted graphically. The final equations take a new form, which lead to a simple expression for the image position of any unmatched model point.
Resumo:
A typical robot vision scenario might involve a vehicle moving with an unknown 3D motion (translation and rotation) while taking intensity images of an arbitrary environment. This paper describes the theory and implementation issues of tracking any desired point in the environment. This method is performed completely in software without any need to mechanically move the camera relative to the vehicle. This tracking technique is simple an inexpensive. Furthermore, it does not use either optical flow or feature correspondence. Instead, the spatio-temporal gradients of the input intensity images are used directly. The experimental results presented support the idea of tracking in software. The final result is a sequence of tracked images where the desired point is kept stationary in the images independent of the nature of the relative motion. Finally, the quality of these tracked images are examined using spatio-temporal gradient maps.