982 resultados para Potential oscillations
Resumo:
The relative influence of various heavy vehicle design features on road-damaging potential is discussed. Testing procedures that could be used to measure the road-damaging potential of heavy vehicles are examined. A validated vehicle simulation is used to examine some of the characteristics of dynamic tyre forces generated by typical leaf sprung and air sprung articulated heavy vehicles for typical highway conditions. The proposed EC suspension test is simulated and the results compared with dynamic tyre forces generated under highway conditions. It is concluded that the road-damaging potential of a vehicle cannot be assessed by the simplistic parametric measurement of the proposed EC test. It is questionable whether a vehicle that passes the test will be any more 'road friendly' than one that fails.
Resumo:
Assessing the road damaging potential of heavy vehicles is becoming an increasingly important issue. In this paper, current vehicle regulations and possible future alternatives are reviewed, and are categorized as tests on individual axles and whole vehicles, and 'direct' and 'indirect' tests. Whole vehicle methods of assessing road damaging potential accurately are then discussed. Direct methods are investigated (focussing on using a force measuring mat), and drawbacks are highlighted. Indirect methods using a transient input applied to individual axles are then examined. Results indicate that if non-linearities are accounted for properly, indirect methods of assessing whole vehicle road damaging potential could offer the required accuracy for a possible future test procedure.
Resumo:
It is shown that for the screened Coulomb potential and isotropic harmonic oscillator, there exists an infinite number of closed orbits for suitable angular momentum values. At the aphelion (perihelion) points of classical orbits, an extended Runge-Lenz vector for the screened Coulomb potential and an extended quadrupole tensor for the screened isotropic harmonic oscillator are still conserved. For the screened two-dimensional (2D) Coulomb potential and isotropic harmonic oscillator, the dynamical symmetries SO3 and SU(2) are still preserved at the aphelion (perihelion) points of classical orbits, respectively. For the screened 3D Coulomb potential, the dynamical symmetry SO4 is also preserved at the aphelion (perihelion) points of classical orbits. But for the screened 3D isotropic harmonic oscillator, the dynamical symmetry SU(2) is only preserved at the aphelion (perihelion) points of classical orbits in the eigencoordinate system. For the screened Coulomb potential and isotropic harmonic oscillator, only the energy (but not angular momentum) raising and lowering operators can be constructed from a factorization of the radial Schrodinger equation.
Resumo:
In this paper, a reliable technique for calculating angular frequencies of nonlinear oscillators is developed. The new algorithm offers a promising approach by constructing a Hamiltonian for the nonlinear oscillator. Some illustrative examples are given. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Based on the embedded atom method (EAM) proposed by Daw and Baskes and Johnson's model, this paper constructs a new N-body potential for bcc crystal Mo. The procedure of constructing the new N-body potential can be applied to other metals. The dislocation emission from a crack tip has been simulated successfully using molecular dynamics method, the result is in good agreement with the elastic solution.
Resumo:
It has been predicted that the floating potential of particles in plasma may become positive when the particle surface temperature is high enough, but, to our knowledge, no positive floating potential has been obtained yet. In the present paper the floating potential theory of high-temperature particles in plasma is developed to cover the positive potential range for the first time, and a general approximate analytical formula for the positive floating potential with a thin plasma sheath and subsonic plasma flow is derived from the new model recently proposed by the authors. The results show that when the floating potential is positive, the net flux of charge incident on the particle approaches a constant similar to the 'electron saturation' phenomena in the case of the electric probes.