986 resultados para Postoperative Myocardial-ischemia
Resumo:
To what extent hypoxia alters the adenosine (ADO) system and impacts on cardiac function during embryogenesis is not known. Ectonucleoside triphosphate diphosphohydrolase (CD39), ecto-5'-nucleotidase (CD73), adenosine kinase (AdK), adenosine deaminase (ADA), equilibrative (ENT1,3,4), and concentrative (CNT3) transporters and ADO receptors A1, A2A, A2B, and A3 constitute the adenosinergic system. During the first 4 days of development chick embryos were exposed in ovo to normoxia followed or not followed by 6 h hypoxia. ADO and glycogen content and mRNA expression of the genes were determined in the atria, ventricle, and outflow tract of the normoxic (N) and hypoxic (H) hearts. Electrocardiogram and ventricular shortening of the N and H hearts were recorded ex vivo throughout anoxia/reoxygenation ± ADO. Under basal conditions, CD39, CD73, ADK, ADA, ENT1,3,4, CNT3, and ADO receptors were differentially expressed in the atria, ventricle, and outflow tract. In H hearts ADO level doubled, glycogen decreased, and mRNA expression of all the investigated genes was downregulated by hypoxia, except for A2A and A3 receptors. The most rapid and marked downregulation was found for ADA in atria. H hearts were arrhythmic and more vulnerable to anoxia-reoxygenation than N hearts. Despite downregulation of the genes, exposure of isolated hearts to ADO 1) preserved glycogen through activation of A1 receptor and Akt-GSK3β-GS pathway, 2) prolonged activity and improved conduction under anoxia, and 3) restored QT interval in H hearts. Thus hypoxia-induced downregulation of the adenosinergic system can be regarded as a coping response, limiting the detrimental accumulation of ADO without interfering with ADO signaling.
Resumo:
Despite its small fraction of the total body weight (2%), the brain contributes for 20% and 25% respectively of the total oxygen and glucose consumption of the whole body. Indeed, glucose has been considered the energy substrate par excellence for the brain. However, evidence accumulated over the last half century revealed an important role for the monocarboxylate lactate in fulfilling the energy needs of neurons. This is particularly true during physiological neuronal activation and in pathological conditions. Lactate transport into and out of the cell is mediated by a family of proton-linked transporters called monocarboxylate transporters (MCTs). In the central nervous system, only three of them have been well characterized: MCT2 is the predominant neuronal isoform, while the other non¬neuronal cell types of the brain express the ubiquitous isoform MCT1. Quite recently, the MCT4 isoform has been described in astrocytes. Due to its high transport capacity compared to the other two isoforms, MCT4 is particularly adapted for glycolytic cells. Because of its recent discovery in the brain, nothing was known about its regulation in the central nervous system. Here we show that MCT4 is regulated by oxygen levels in primary cultures of astrocytes in a time- and concentration-dependent manner via the hypoxia inducible factor-la (HIF-la). Moreover, we showed that MCT4 expression is essential for astrocyte survival under low oxygen conditions. In parallel, we investigated the possible implication of the pyruvate kinase isoform Pkm2, a strong enhancer of glycolysis, in its regulation. Then we showed that MCT4 expression, as well as the expression of the other two MCT isoforms, is altered in a murine model of stroke. Surprisingly, neurons started to express MCT4, as well as MCT1, under such conditions. Altogether, these data suggest that MCT4, due to its high transport capacity for lactate, may be the isoform that enables cells to operate a major metabolic adaptation in response to pathological situations that alter metabolic homeostasis of the brain. -- Le cerveau représente 2% du poids corporel total, mais il contribue pour 20% de la consommation totale d'oxygène et 25% de celle de glucose au repos. Le glucose est considéré comme le substrat énergétique par excellence pour le cerveau. Néanmoins, depuis un demi- siècle maintenant, de plus en plus de travaux ont démontré que le lactate joue un rôle majeur dans le métabolisme cérébral et est capable du subvenir aux besoins énergétiques des neurones. Le lactate est tout particulièrement nécessaire pendant l'activation neuronale ainsi qu'en situation pathologique. Le transport du lactate à travers la barrière hématoencéphalique ainsi qu'à travers les membranes cellulaires est assuré par la famille des transporteurs aux monocarboxylates (MCTs). Dans le système nerveux central, uniquement trois d'entre eux ont été décrits: MCT2 est considéré comme le transporteur neuronal, alors que les autres types cellulaires qui constituent le cerveau expriment l'isoforme ubiquitaire MCT1. Récemment, l'isoforme MCT4 a été rapportée sur les astrocytes. Dû à sa grande capacité de transport pour le lactate, MCT4 est tout particulièrement adapté pour soutenir le métabolisme des cellules hautement glycolytiques, comme les astrocytes. En raison de sa toute récente découverte, les aspects comprenant sa régulation et son rôle dans le cerveau sont pour l'instant méconnus. Les résultats exposés dans ce travail démontrent dans un premier temps que l'expression de MCT4 est régulée par les niveaux d'oxygène dans les cultures d'astrocytes corticaux par le biais du facteur de transcription HIF-la. De plus, nous avons démontré que l'expression de MCT4 est essentielle à la survie des astrocytes quand le niveau d'oxygénation baisse. En parallèle, des résultats préliminaires suggèrent que l'isoforme 2 de la pyruvate kinase, un puissant régulateur de la glycolyse, pourrait jouer un rôle dans la régulation de MCT4. Dans la deuxième partie du travail nous avons démontré que l'expression de MCT4, ainsi que celle de MCT1 et MCT2, est altérée dans un modèle murin d'ischémie cérébrale. De façon surprenante, les neurones expriment MCT4 dans cette condition, alors que ce n'est pas le cas en condition physiologique. En tenant compte de ces résultats, nous suggérons que MCT4, dû à sa particulièrement grande capacité de transport pour le lactate, représente le MCT qui permet aux cellules du système nerveux central, notamment les astrocytes et les neurones, de s'adapter à de très fortes perturbations de l'homéostasie métabolique du cerveau qui surviennent en condition pathologique.
Morphological and functional recovery of the canine gallbladder mucosa following two hours' ischemia
Resumo:
Myocardial ischaemia-reperfusion (MIR) triggers a sterile inflammatory response important for myocardial healing, but which may also contribute to adverse ventricular remodelling. Such inflammation is initiated by molecular danger signals released by damaged myocardium, which induce innate immune responses by activating toll-like receptors (TLRs). Detrimental roles have been recently reported for TLR2, TLR3 and TLR4. The role of other TLRs is unknown. We therefore evaluated the role of TLR5, expressed at high level in the heart, in the development of myocardial damage and inflammation acutely triggered by MIR. TLR5-/- and wild-type (WT) mice were exposed to MIR (30 min ischaemia, 2 h reperfusion). We measured infarct size, markers of cardiac oxidative stress, myocardial phosphorylation state of mitogen-activated protein (MAP) kinases and AKT, expression levels of chemokines and cytokines in the heart and plasma, as well as cardiac function by echography and conductance volumetry. TLR5-deficient mice had normal cardiac morphology and function under physiological conditions. After MIR, the absence of TLR5 promoted an increase in infarct size and myocardial oxidative stress. Lack of TLR5 fostered p38 phosphorylation, reduced AKT phosphorylation and markedly increased the expression of inflammatory cytokines, whereas it precipitated acute LV (left ventricle) dysfunction. Therefore, contrary to the detrimental roles of TLR2, TLR3 and TLR4 in the infarcted heart, TLR5 is important to limit myocardial damage, inflammation and functional compromise after MIR.
Resumo:
Background: Current guidelines for patients with moderate- or high-risk acute coronary syndromes recommend an early invasive approach with concomitant antithrombotic therapy, including aspirin, clopidogrel, unfractionated or low-molecular-weight heparin, and glycoprotein IIb/IIIa inhibitors. We evaluated the role of thrombin-specific anticoagulation with bivalirudin in such patients. Methods: We assigned 13,819 patients with acute coronary syndromes to one of three antithrombotic regimens: unfractionated heparin or enoxaparin plus a glycoprotein IIb/IIIa inhibitor, bivalirudin plus a glycoprotein IIb/IIIa inhibitor, or bivalirudin alone. The primary end points were a composite ischemia end point (death, myocardial infarction, or unplanned revascularization for ischemia), major bleeding, and the net clinical outcome, defined as the combination of composite ischemia or major bleeding. Results: Bivalirudin plus a glycoprotein IIb/IIIa inhibitor, as compared with heparin plus a glycoprotein IIb/IIIa inhibitor, was associated with noninferior 30-day rates of the composite ischemia end point (7.7% and 7.3%, respectively), major bleeding (5.3% and 5.7%), and the net clinical outcome end point (11.8% and 11.7%). Bivalirudin alone, as compared with heparin plus a glycoprotein IIb/IIIa inhibitor, was associated with a noninferior rate of the composite ischemia end point (7.8% and 7.3%, respectively; P = 0.32; relative risk, 1.08; 95% confidence interval [CI], 0.93 to 1.24) and significantly reduced rates of major bleeding (3.0% vs. 5.7%; P<0.001; relative risk, 0.53; 95% CI, 0.43 to 0.65) and the net clinical outcome end point (10.1% vs. 11.7%; P = 0.02; relative risk, 0.86; 95% CI, 0.77 to 0.97). Conclusions: In patients with moderate- or high-risk acute coronary syndromes who were undergoing invasive treatment with glycoprotein IIb/IIIa inhibitors, bivalirudin was associated with rates of ischemia and bleeding that were similar to those with heparin. Bivalirudin alone was associated with similar rates of ischemia and significantly lower rates of bleeding. (ClinicalTrials.gov number, NCT00093158.)
Resumo:
Background: Vorapaxar is a new oral protease-activated-receptor 1 (PAR-1) antagonist that inhibits thrombin-induced platelet activation. Methods: In this multinational, double-blind, randomized trial, we compared vorapaxar with placebo in 12,944 patients who had acute coronary syndromes without ST-segment elevation. The primary end point was a composite of death from cardiovascular causes, myocardial infarction, stroke, recurrent ischemia with rehospitalization, or urgent coronary revascularization. RESULTS: Follow-up in the trial was terminated early after a safety review. After a median follow-up of 502 days (interquartile range, 349 to 667), the primary end point occurred in 1031 of 6473 patients receiving vorapaxar versus 1102 of 6471 patients receiving placebo (Kaplan-Meier 2-year rate, 18.5% vs. 19.9%; hazard ratio, 0.92; 95% confidence interval [CI], 0.85 to 1.01; P = 0.07). A composite of death from cardiovascular causes, myocardial infarction, or stroke occurred in 822 patients in the vorapaxar group versus 910 in the placebo group (14.7% and 16.4%, respectively; hazard ratio, 0.89; 95% CI, 0.81 to 0.98; P = 0.02). Rates of moderate and severe bleeding were 7.2% in the vorapaxar group and 5.2% in the placebo group (hazard ratio, 1.35; 95% CI, 1.16 to 1.58; P<0.001). Intracranial hemorrhage rates were 1.1% and 0.2%, respectively (hazard ratio, 3.39; 95% CI, 1.78 to 6.45; P<0.001). Rates of nonhemorrhagic adverse events were similar in the two groups. Conclusions: In patients with acute coronary syndromes, the addition of vorapaxar to standard therapy did not significantly reduce the primary composite end point but significantly increased the risk of major bleeding, including intracranial hemorrhage. (Funded by Merck; TRACER ClinicalTrials.gov number, NCT00527943.)
Resumo:
Objectifs La chirurgie pancréatique reste associée à une morbidité postopératoire importante. Les efforts sont concentrés la plupart du temps sur la diminution de cette morbidité, mais la détection précoce de patients à risque de complications pourrait être une autre stratégie valable. Un score simple de prédiction des complications après duodénopancréatectomie céphalique a récemment été publié par Braga et al. La présente étude a pour but de valider ce score et de discuter de ses possibles implications cliniques. Méthodes De 2000 à 2015, 245 patients ont bénéficié d'une duodénopancréatectomie céphalique dans notre service. Les complications postopératoires ont été recensées selon la classification de Dindo et Clavien. Le score de Braga se base sur quatre paramètres : le score ASA (American Society of Anesthesiologists), la texture du pancréas, le diamètre du canal de Wirsung (canal pancréatique principal) et les pertes sanguines intra-opératoires. Un score de risque global de 0 à 15 peut être calculé pour chaque patient. La puissance de discrimination du score a été calculée en utilisant une courbe ROC (receiver operating characteristic). Résultats Des complications majeures sont apparues chez 31% des patients, alors que 17% des patients ont eu des complications majeures dans l'article de Braga. La texture du pancréas et les pertes sanguines étaient statistiquement significativement corrélées à une morbidité accrue. Les aires sous la courbe étaient respectivement de 0.95 et 0.99 pour les scores classés en quatre catégories de risques (de 0 à 3, 4 à 7, 8 à 11 et 12 à 15) et pour les scores individuels (de 0 à 15). Conclusions Le score de Braga permet donc une bonne discrimination entre les complications mineures et majeures. Notre étude de validation suggère que ce score peut être utilisé comme un outil pronostique de complications majeures après duodénopancréatectomie céphalique. Les implications cliniques, c'est-à-dire si les stratégies de prise en charge postopératoire doivent être adaptées en fonction du risque individuel du patient, restent cependant à élucider. -- Objectives Pancreatic surgery remains associated with important morbidity. Efforts are most commonly concentrated on decreasing postoperative morbidity, but early detection of patients at risk could be another valuable strategy. A simple prognostic score has recently been published. This study aimed to validate this score and discuss possible clinical implications. Methods From 2000 to 2012, 245 patients underwent pancreaticoduodenectomy. Complications were graded according to the Dindo-Clavien classification. The Braga score is based on American Society of Anesthesiologists score, pancreatic texture, Wirsung duct diameter, and blood loss. An overall risk score (from 0 to 15) can be calculated for each patient. Score discriminant power was calculated using a receiver operating characteristic curve. Results Major complications occurred in 31% of patients compared to 17% in Braga's data. Pancreatic texture and blood loss were independently statistically significant for increased morbidity. The areas under curve were 0.95 and 0.99 for 4-risk categories and for individual scores, respectively. Conclusions The Braga score discriminates well between minor and major complications. Our validation suggests that it can be used as prognostic tool for major complications after pancreaticoduodenectomy. The clinical implications, i.e., whether postoperative treatment strategies should be adapted according to the patient's individual risk, remain to be elucidated.
Resumo:
BACKGROUND: Cerebral cholinergic transmission plays a key role in cognitive function, and anticholinergic drugs administered during the perioperative phase are a hypothetical cause of postoperative cognitive dysfunction (POCD). We hypothesized that a perioperative increase in serum anticholinergic activity (SAA) is associated with POCD in elderly patients. METHODS: Seventy-nine patients aged >65 years undergoing elective major surgery under stan- dardized general anesthesia (thiopental, sevoflurane, fentanyl, and atracurium) were investi- gated. Cognitive functions were assessed preoperatively and 7 days postoperatively using the extended version of the CERAD-Neuropsychological Assessment Battery. POCD was defined as a postoperative decline >1 z-score in at least 2 test variables. SAA was measured preop- eratively and 7 days postoperatively at the time of cognitive testing. Hodges-Lehmann median differences and their 95% confidence intervals were calculated for between-group comparisons. RESULTS: Of the patients who completed the study, 46% developed POCD. Patients with POCD were slightly older and less educated than patients without POCD. There were no relevant differences between patients with and without POCD regarding gender, demographically cor- rected baseline cognitive functions, and duration of anesthesia. There were no large differences between patients with and without POCD regarding SAA preoperatively (pmol/mL, median [inter- quartile range]/median difference [95% CI], P; 1.14 [0.72, 2.37] vs 1.13 [0.68, 1.68]/0.12 [−0.31, 0.57], P = 0.56), SAA 7 days postoperatively (1.32 [0.68, 2.59] vs 0.97 [0.65, 1.83]/0.25 [−0.26, 0.81], P = 0.37), or changes in SAA (0.08 [−0.50, 0.70] vs −0.02 [−0.53, 0.41]/0.1 [−0.31, 0.52], P = 0.62). There was no significant relationship between changes in SAA and changes in cognitive function (Spearman rank correlation coefficient preoperatively of 0.03 [95% CI, −0.21, 0.26] and postoperatively of −0.002 [95% CI, −0.24, 0.23]). CONCLUSIONS: In this panel of patients with low baseline SAA and clinically insignificant periopera- tive anticholinergic burden, although a relationship cannot be excluded in some patients, our analysis suggests that POCD is probably not a substantial consequence of anticholinergic medications admin- istered perioperatively but rather due to other mechanisms.
Resumo:
Mitogen-activated protein kinases (MAPKs) are key regulators that have been linked to cell survival and death. Among the main classes of MAPKs, c-jun N-terminal kinase (JNK) has been shown to mediate cell stress responses associated with apoptosis. In Vitro, hypoxia induced a significant increase in 661W cell death that paralleled increased activity of JNK and c-jun. 661W cells cultured in presence of the inhibitor of JNK (D-JNKi) were less sensitive to hypoxia-induced cell death. In vivo, elevation in intraocular pressure (IOP) in the rat promoted cell death that correlated with modulation of JNK activation. In vivo inhibition of JNK activation with D-JNKi resulted in a significant and sustained decrease in apoptosis in the ganglion cell layer, the inner nuclear layer and the photoreceptor layer. These results highlight the protective effect of D-JNKi in ischemia/reperfusion induced cell death of the retina.
Resumo:
Lactate has been shown to offer neuroprotection in several pathologic conditions. This beneficial effect has been attributed to its use as an alternative energy substrate. However, recent description of the expression of the HCA1 receptor for lactate in the central nervous system calls for reassessment of the mechanism by which lactate exerts its neuroprotective effects. Here, we show that HCA1 receptor expression is enhanced 24 hours after reperfusion in an middle cerebral artery occlusion stroke model, in the ischemic cortex. Interestingly, intravenous injection of L-lactate at reperfusion led to further enhancement of HCA1 receptor expression in the cortex and striatum. Using an in vitro oxygen-glucose deprivation model, we show that the HCA1 receptor agonist 3,5-dihydroxybenzoic acid reduces cell death. We also observed that D-lactate, a reputedly non-metabolizable substrate but partial HCA1 receptor agonist, also provided neuroprotection in both in vitro and in vivo ischemia models. Quite unexpectedly, we show D-lactate to be partly extracted and oxidized by the rodent brain. Finally, pyruvate offered neuroprotection in vitro whereas acetate was ineffective. Our data suggest that L- and D-lactate offer neuroprotection in ischemia most likely by acting as both an HCA1 receptor agonist for non-astrocytic (most likely neuronal) cells as well as an energy substrate.