883 resultados para Post-human
Resumo:
Virtual prototyping emerges as a new technology to replace existing physical prototypes for product evaluation, which are costly and time consuming to manufacture. Virtualization technology allows engineers and ergonomists to perform virtual builds and different ergonomic analyses on a product. Digital Human Modelling (DHM) software packages such as Siemens Jack, often integrate with CAD systems to provide a virtual environment which allows investigation of operator and product compatibility. Although the integration between DHM and CAD systems allows for the ergonomic analysis of anthropometric design, human musculoskeletal, multi-body modelling software packages such as the AnyBody Modelling System (AMS) are required to support physiologic design. They provide muscular force analysis, estimate human musculoskeletal strain and help address human comfort assessment. However, the independent characteristics of the modelling systems Jack and AMS constrain engineers and ergonomists in conducting a complete ergonomic analysis. AMS is a stand alone programming system without a capability to integrate into CAD environments. Jack is providing CAD integrated human-in-the-loop capability, but without considering musculoskeletal activity. Consequently, engineers and ergonomists need to perform many redundant tasks during product and process design. Besides, the existing biomechanical model in AMS uses a simplified estimation of body proportions, based on a segment mass ratio derived scaling approach. This is insufficient to represent user populations anthropometrically correct in AMS. In addition, sub-models are derived from different sources of morphologic data and are therefore anthropometrically inconsistent. Therefore, an interface between the biomechanical AMS and the virtual human model Jack was developed to integrate a musculoskeletal simulation with Jack posture modeling. This interface provides direct data exchange between the two man-models, based on a consistent data structure and common body model. The study assesses kinematic and biomechanical model characteristics of Jack and AMS, and defines an appropriate biomechanical model. The information content for interfacing the two systems is defined and a protocol is identified. The interface program is developed and implemented through Tcl and Jack-script(Python), and interacts with the AMS console application to operate AMS procedures.
Resumo:
Finite Element Modeling (FEM) has become a vital tool in the automotive design and development processes. FEM of the human body is a technique capable of estimating parameters that are difficult to measure in experimental studies with the human body segments being modeled as complex and dynamic entities. Several studies have been dedicated to attain close-to-real FEMs of the human body (Pankoke and Siefert 2007; Amann, Huschenbeth et al. 2009; ESI 2010). The aim of this paper is to identify and appraise the state of-the art models of the human body which incorporate detailed pelvis and/or lower extremity models. Six databases and search engines were used to obtain literature, and the search was limited to studies published in English since 2000. The initial search results identified 636 pelvis-related papers, 834 buttocks-related papers, 505 thigh-related papers, 927 femur-related papers, 2039 knee-related papers, 655 shank-related papers, 292 tibia-related papers, 110 fibula-related papers, 644 ankle related papers, and 5660 foot-related papers. A refined search returned 100 pelvis-related papers, 45 buttocks related papers, 65 thigh-related papers, 162 femur-related papers, 195 kneerelated papers, 37 shank-related papers, 80 tibia-related papers, 30 fibula-related papers and 102 ankle-related papers and 246 foot-related papers. The refined literature list was further restricted by appraisal against a modified LOW appraisal criteria. Studies with unclear methodologies, with a focus on populations with pathology or with sport related dynamic motion modeling were excluded. The final literature list included fifteen models and each was assessed against the percentile the model represents, the gender the model was based on, the human body segment/segments included in the model, the sample size used to develop the model, the source of geometric/anthropometric values used to develop the model, the posture the model represents and the finite element solver used for the model. The results of this literature review provide indication of bias in the available models towards 50th percentile male modeling with a notable concentration on the pelvis, femur and buttocks segments.
Resumo:
In this work a biomechanical model is used for simulation of muscle forces necessary to maintain the posture in a car seat under different support conditions.
Resumo:
Membranes prepared from Bombyx mori silk fibroin have shown potential as a substrate for human limbal epithelial (L-EC) and stromal cell cultivation. Here we present fibroin as a dual-layer construct containing both an epithelium and underlying stroma for corneolimbal reconstruction. We have compared the growth and phenotype of L-EC on non-porous versus porous fibroin membranes. Furthermore, we have compared the growth of limbal mesenchymal stromal cells (L-MSC) in either serum-supplemented medium or the MesenCult-XF® culture system within fibroin fibrous mats. The co-culture of L-EC and L-MSC in fibroin dual-layer constructs was also examined. L-EC on porous membranes displayed a squamous monolayer; in contrast, L-EC on non-porous fibroin appeared cuboidal and stratified. Both constructs maintained evidence of corneal phenotype (cytokeratin 3/12) and distribution of ΔNp63+ progenitor cells. L-MSC cultivated within fibroin fibrous mats in serum-supplemented medium contained less than 64% of cells expressing the characteristic MSC phenotype of CD73+CD90+CD105+ after two weeks, compared with over 81% in MesenCult-XF® medium. Dual-layer fibroin scaffolds consisting of L-EC and L-MSC maintained a similar phenotype as on the separate layers. These results support the feasibility of a 3D engineered limbus constructed from B. mori silk fibroin, and warrant further studies into the potential benefits it offers to corneolimbal tissue regeneration.
Resumo:
In 2001 China amended its copyright law in accordance with the requirements of the Agreement on Trade Related Aspects of Intellectual Property (TRIPS). This thesis explores the impact of copyright reform on China’s domestic film and music industries. Through extensive interviews with film and music industry workers – directors, producers, executives, judges, lawyers and musicians – it investigates the role of copyright in film and music’s shift from state driven to commercially focussed. The construction and negotiation of a new ‘copyright culture’ in China is examined through the lens of Yurchak’s (1999) concept of ‘entrepreneurial governmentality.’ Administrative structures put in place prior to China’s economic reform are no longer capable of controlling film and music production and consumption and new approaches to managing it are becoming more important. High levels of unauthorised distribution are forcing these industries to adapt their business models so that they can function in a system with weak copyright protection. Legal, economic and political changes have resulted in the emergence of an ‘entrepreneurial governmentality’ among film and music industry professionals. This commercially focussed group is, in turn, increasing pressure on the state to expand the space in which it can function and support efforts to strengthen the copyright system that allows it to exist. It is suggested that the construction and negotiation of a new ‘copyright culture’ is now taking place. This thesis describes the current situation in the film and music industries. It examines the tension between the theoretical possibilities created by copyright law, and the practical challenges of operating in China. It observes innovative business models being applied by film and music businesses in China. It discusses the impact of traditional attitudes to copying and also examines the role that open licensing models might play in helping limit the negative effects of copyright protection on public access to content and in raising levels of education about copyright among key groups within the community.
Resumo:
Purpose: To compare accuracies of different methods for calculating human lens power when lens thickness is not available. Methods: Lens power was calculated by four methods. Three methods were used with previously published biometry and refraction data of 184 emmetropic and myopic eyes of 184 subjects (age range [18, 63] years, spherical equivalent range [–12.38, +0.75] D). These three methods consist of the Bennett method, which uses lens thickness, our modification of the Stenström method and the Bennett¬Rabbetts method, both of which do not require knowledge of lens thickness. These methods include c constants, which represent distances from lens surfaces to principal planes. Lens powers calculated with these methods were compared with those calculated using phakometry data available for a subgroup of 66 emmetropic eyes (66 subjects). Results: Lens powers obtained from the Bennett method corresponded well with those obtained by phakometry for emmetropic eyes, although individual differences up to 3.5D occurred. Lens powers obtained from the modified¬Stenström and Bennett¬Rabbetts methods deviated significantly from those obtained with either the Bennett method or phakometry. Customizing the c constants improved this agreement, but applying these constants to the entire group gave mean lens power differences of 0.71 ± 0.56D compared with the Bennett method. By further optimizing the c constants, the agreement with the Bennett method was within ± 1D for 95% of the eyes. Conclusion: With appropriate constants, the modified¬Stenström and Bennett¬Rabbetts methods provide a good approximation of the Bennett lens power in emmetropic and myopic eyes.
Resumo:
This workshop provides an ergonomic framework and design rules for the design of automotive controls, considering anthropometric design, physiologic design, biomechanic design and information design.
Resumo:
Digital human modelling (DHM) has today matured from research into industrial application. In the automotive domain, DHM has become a commonly used tool in virtual prototyping and human-centred product design. While this generation of DHM supports the ergonomic evaluation of new vehicle design during early design stages of the product, by modelling anthropometry, posture, motion or predicting discomfort, the future of DHM will be dominated by CAE methods, realistic 3D design, and musculoskeletal and soft tissue modelling down to the micro-scale of molecular activity within single muscle fibres. As a driving force for DHM development, the automotive industry has traditionally used human models in the manufacturing sector (production ergonomics, e.g. assembly) and the engineering sector (product ergonomics, e.g. safety, packaging). In product ergonomics applications, DHM share many common characteristics, creating a unique subset of DHM. These models are optimised for a seated posture, interface to a vehicle seat through standardised methods and provide linkages to vehicle controls. As a tool, they need to interface with other analytic instruments and integrate into complex CAD/CAE environments. Important aspects of current DHM research are functional analysis, model integration and task simulation. Digital (virtual, analytic) prototypes or digital mock-ups (DMU) provide expanded support for testing and verification and consider task-dependent performance and motion. Beyond rigid body mechanics, soft tissue modelling is evolving to become standard in future DHM. When addressing advanced issues beyond the physical domain, for example anthropometry and biomechanics, modelling of human behaviours and skills is also integrated into DHM. Latest developments include a more comprehensive approach through implementing perceptual, cognitive and performance models, representing human behaviour on a non-physiologic level. Through integration of algorithms from the artificial intelligence domain, a vision of the virtual human is emerging.
Resumo:
This study examines nascent entrepreneurship by comparing individuals engaged in nascent activities (n=380) with a control group (n=608), after screening a sample from the general population (n=30,427). The study then follows the developmental process of nascent entrepreneurs for 18 months. Bridging and bonding social capital, consisting of both strong and weak ties, was a robust predictor for nascent entrepreneurs, as well as for advancing through the start-up process. With regard to outcomes like first sale or showing a profit, only one aspect of social capital, viz. being a member of a business network, had a statistically significant positive effect. The study supports human capital in predicting entry into nascent entrepreneurship, but only weakly for carrying the start-up process towards successful completion.
Resumo:
This brief paper gives an outline of a series of painting workshops held over a two year period (2010 and 2011) with the principal aim of raising the awareness of University students to human impact on the planet and on its biodiversity. The workshops were part of a Post-graduate research students' network engagement programme instigated and supported by a number of staff in Counselling Services and International Student Services. Two of the United Nations International years were celebrated and student engagement in practical painting workshops had many benefits that are discussed in the body of the paper.
Resumo:
Criminal Justice: Local and Global covers the way the 'local' can be widened out to look at international, transnational and supranational aspects of justice. This means that issues such as corporate crime and human rights can be discussed in a comparative and critical way, examining the possibility, for example of an International Criminal Court, cross-national jurisdictions of regulation and control (such as Interpol) and so on. Each chapter covers a different area of regulation, punishment and process.
Resumo:
This article examines the technocratic priorities of criminological discourse following the Second World War. In doing so, it charts the role and influence of the United Nations and the doctrine of social defence, and traces those shifts and events that have forged a nexus between criminological endeavour and processes of governance. This article aims to illustrate that social defence and international reconstruction provide a useful framework for understanding the links between power/knowledge and the pragmatic orientations of criminological scholarship.
Resumo:
Background Although risk of human papillomavirus (HPV)–associated cancers of the anus, cervix, oropharynx, penis, vagina, and vulva is increased among persons with AIDS, the etiologic role of immunosuppression is unclear and incidence trends for these cancers over time, particularly after the introduction of highly active antiretroviral therapy in 1996, are not well described. Methods Data on 499 230 individuals diagnosed with AIDS from January 1, 1980, through December 31, 2004, were linked with cancer registries in 15 US regions. Risk of in situ and invasive HPV-associated cancers, compared with that in the general population, was measured by use of standardized incidence ratios (SIRs) and 95% confidence intervals (CIs). We evaluated the relationship of immunosuppression with incidence during the period of 4–60 months after AIDS onset by use of CD4 T-cell counts measured at AIDS onset. Incidence during the 4–60 months after AIDS onset was compared across three periods (1980–1989, 1990–1995, and 1996–2004). All statistical tests were two-sided. Results Among persons with AIDS, we observed statistically significantly elevated risk of all HPV-associated in situ (SIRs ranged from 8.9, 95% CI = 8.0 to 9.9, for cervical cancer to 68.6, 95% CI = 59.7 to 78.4, for anal cancer among men) and invasive (SIRs ranged from 1.6, 95% CI = 1.2 to 2.1, for oropharyngeal cancer to 34.6, 95% CI = 30.8 to 38.8, for anal cancer among men) cancers. During 1996–2004, low CD4 T-cell count was associated with statistically significantly increased risk of invasive anal cancer among men (relative risk [RR] per decline of 100 CD4 T cells per cubic millimeter = 1.34, 95% CI = 1.08 to 1.66, P = .006) and non–statistically significantly increased risk of in situ vagina or vulva cancer (RR = 1.52, 95% CI = 0.99 to 2.35, P = .055) and of invasive cervical cancer (RR = 1.32, 95% CI = 0.96 to 1.80, P = .077). Among men, incidence (per 100 000 person-years) of in situ and invasive anal cancer was statistically significantly higher during 1996–2004 than during 1990–1995 (61% increase for in situ cancers, 18.3 cases vs 29.5 cases, respectively; RR = 1.71, 95% CI = 1.24 to 2.35, P < .001; and 104% increase for invasive cancers, 20.7 cases vs 42.3 cases, respectively; RR = 2.03, 95% CI = 1.54 to 2.68, P < .001). Incidence of other cancers was stable over time. Conclusions Risk of HPV-associated cancers was elevated among persons with AIDS and increased with increasing immunosuppression. The increasing incidence for anal cancer during 1996–2004 indicates that prolonged survival may be associated with increased risk of certain HPV-associated cancers.
Resumo:
Introduction—Human herpesvirus 8 (HHV8) is necessary for Kaposi sarcoma (KS) to develop, but whether peripheral blood viral load is a marker of KS burden (total number of KS lesions), KS progression (the rate of eruption of new KS lesions), or both is unclear. We investigated these relationships in persons with AIDS. Methods—Newly diagnosed patients with AIDS-related KS attending Mulago Hospital, in Kampala, Uganda, were assessed for KS burden and progression by questionnaire and medical examination. Venous blood samples were taken for HHV8 load measurements by PCR. Associations were examined with odds ratio (OR) and 95% confidence intervals (CI) from logistic regression models and with t-tests. Results—Among 74 patients (59% men), median age was 34.5 years (interquartile range [IQR], 28.5-41). HHV8 DNA was detected in 93% and quantified in 77% patients. Median virus load was 3.8 logs10/106 peripheral blood cells (IQR 3.4-5.0) and was higher in men than women (4.4 vs. 3.8 logs; p=0.04), in patients with faster (>20 lesions per year) than slower rate of KS lesion eruption (4.5 vs. 3.6 logs; p<0.001), and higher, but not significantly, among patients with more (>median [20] KS lesions) than fewer KS lesions (4.4 vs. 4.0 logs; p=0.16). HHV8 load was unrelated to CD4 lymphocyte count (p=0.23). Conclusions—We show significant association of HHV8 load in peripheral blood with rate of eruption of KS lesions, but not with total lesion count. Our results suggest that viral load increases concurrently with development of new KS lesions.
Resumo:
Effective digital human model (DHM) simulation of automotive driver packaging ergonomics, safety and comfort depends on accurate modelling of occupant posture, which is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper comprises: a study investigating the component mechanical behaviour of a spring-suspended, production level seat when indented by SAE J826 type, human thigh-buttock representing hard shell; a model of seated human buttock shape for improved indenter design using a multivariate representation of Australian population thigh-buttock anthropometry; and a finite-element study simulating the deflection of human buttock and thigh soft tissue when seated, based on seated MRI. The results of the three studies provide a description of the mechanical properties of the driver-seat interface, and allow validation of future dynamic simulations, involving multi-body and finite-element (FE) DHM in virtual ergonomic studies.