996 resultados para Population subdivision
Resumo:
The thermal population in photocarrier systems coupled by hole mixing tunneling is studied by an analysis of the high energy tails in cw photoluminescence spectra of asymmetric coupled double wells. Photocarriers in wide well are heated due to hole transfer from the narrow well through resonant tunneling as well as by photon heating. The influences of the excitation intensity and lattice temperature on the tunneling transfer and thermal population are discussed.
Resumo:
西南地区在我国的经济发展和生态环境建设中占重要地位,但也是我国生态环境最脆弱的地区之一,生态系统退化,生态功能减弱,严重制约着西南林业的可持续经营与发展。本项目采用DNA 分子标记SSR 研究不同生境条件下粗枝云杉群体的遗传变异及其时空分布格局,考察遗传变异与复杂的山地生态环境间的潜在联系,系统地揭示粗枝云杉天然群体与环境系统相互作用的生态适应与分子进化机制。粗枝云杉适应性强,生长迅速,在植树造林和工业用材方面占有重要地位,研究成果可为中国西南部亚高山天然林的可持续经营及退化生态系统的恢复与重建提供理论依据和科学指导。主要研究结果如下: 1. SSR 位点变异丰富,等位基因频率的分布格局多样。7 个SSR 标记全是多态位点,每位点的等位基因数变化范围为13~24,平均为19.9 个。SSR 位点的等位基因片段长度范围变化较大。73.1%的等位基因变异遵循逐步突变模型(SSM)而发生1 个重复基元的变化,22.3%和4.6%的变异分别按两阶段突变模型(TMP)发生1 个重复基元以上的变化和在SSR 位点侧翼区发生1 个碱基变化的插入-删除事件。 2. 粗枝云杉拥有中等偏高水平的遗传多样性和相对大的群体间遗传分化。通过分析代表10 个群体的250 个个体在7 个SSR位点的变化,调查了源自中国西南山区的粗枝云杉的微卫星变异。相当高的遗传多样性和强烈的群体分化发生在粗枝云杉中, 其群体平均Nei's 期望杂合度为0.707 , 群体间遗传距离为0.121~0.224(FST)和0.100~0.537(RST)。然而,群体间遗传距离与地理距离之间无相关性,从而排除了简单的距离分离模式并暗示迁移不是影响粗枝云杉遗传变异格局的主要因素。事实上,使用私有等位基因估算的基因流数量非常低,仅等于0.753。等位基因置换检验(Allele permutation tests)揭示逐步突变及遗传漂变都对群体间分化有贡献。另外,在多数位点检测到显著的群体间遗传差异,这个结果说明自然选择,假设通过环境压力,是引起粗枝云杉微地理分化的主要因素之一。根据SSR基因型,250 个粗枝云杉个体的70%被正确地归类入其各自的来源群体,结果表明微卫星(SSR)对区分来自中国不同生态地理位点的粗枝云杉基因型是有效的。 3. 在SSR、RAPD 和AFLP 位点,显著的群体间遗传结构被发现的,但三种标记间遗传分化程度和群体遗传关系有差异。利用来自10 个群体的247 个个体,我们报告了关于样本粗枝云杉群体间遗传关系的总体看法。根据各自对评价遗传关系的信息能力和适用性,SSR、RAPD 和AFLP 标记被选用,三种技术非常有效地区别这些基因型。使用的SSR、RAPD 和AFLP 标记分别估计平均Dice 相似性系数。Mantel 检验产生显著但相对低的共表型适合度(RAPD = 0.63£AFLP = 0.60和SSR = 0.75)。比较三种标记系统,RAPD 和AFLP 共表型指数相对高地相关(r =0.59),而RAPD 和SSR 及SSR 和AFLP 之间的相关系数分别是0.53 和0.35。所有系统树,包括不同标记资料结合获得的系统树,反映了多数群体依据它们的地理条件而成某种特定关系。结果暗示单个或结合标记系统能用来深入洞察粗枝云杉遗传研究,并且不同标记系统合并资料能提供更可靠的信息。 Southwestern region plays an important role in economic developmentand ecological construction in China. Yet, it is also one of the weak regionsof ecological environment in China with degraded ecosystem and imperfectfunction, which restricts the sustaining management and development ofsouthwestern forestry. The genetic variation and spatial distribution patternof P. asperata populations originating from different habitats wereinvestigated using SSR molecular markers in this study. The correlationsbetween genetic variation and ecological and environmental conditionswere detected, and the interaction between P. asperata populations andenvironmental system and the mechanism of ecological adaption -molecular evolution were revealed. Given the significant ecological andeconomic roles of the fast-growing and wide-adaptive species in reforestation and production of pulp wood and timber, the study couldprovide a strong theoretical evidence and scientific direction for thesustaining management of subalpine natural forest, and the afforestationand rehabilitation of degraded ecosystem. The results are as follows: 1. The genetic variation at SSR loci was abundant and the distributionof allelic frequencies was uneven. All seven loci were polymorphic, and thenumber of alleles per locus varied from 13 to 24 with a mean valueequaling 19.9. The allele sizes at SSR loci were found to vary widely.73.1% of allelic variation followed stepwise mutation model (SSM) whichresults increase or decrease by one repeat type, and 22.3% and 4.6% wereresulted from two-phase mutation model (TMP) with allele size varying bymore than one repeat type and from insertion-deletion events in theflanking regions at SSR loci with a single basepair changing, respectively. 2. P. asperata possessed a moderate to high level of genetic diversityand considerable genetic differentiation. Microsatellite variation of P.asperata. originating from the mountains of southwestern China wasinvestigated by analyzing variation at seven SSR loci in 250 individualsrepresenting ten populations. A fair degree of genetic diversity and strongpopulation subdivision occurred with the mean gene diversity (H) of 0.707,and genetic distances among populations varying between 0.121 and 0.224(FST) and between 0.100 and 0.537 (RST). However, inter-populationgenetic distances showed no correlation with geographic distances between the population sites. This ruled out a simple isolation by distance modeland suggested that migration does not have a great impact. In fact, theamount of gene flow, detected using private alleles, was very low, equalingonly 0.753. Allele permutation tests revealed that stepwise-like mutations,coupled with genetic drift, could contribute to population differentiation.Moreover, significant genetic differences between populations weredetected at most loci. The results indicate that natural selection, presumablythrough environmental stress, may be one of the main factors causingmicro-geographical differentiation in the genetic structure of P. asperata.Based on SSR genotypes, 70% of the 250 individuals were correctlyclassified into their sites of origin. This suggests that microsatellites (SSRs) are effective in distinguishing genotypes of P. asperata originating fromdiverse eco-geographical sites in China. 3. Using a set of 247 individuals from ten P. asperata populations wereport an overview on the genetic relationship among the sampled P.asperata populations. RAPD, AFLP and SSR were used in terms of theirinformativeness and applicability for evaluate relationship and all threetechniques discriminated the genotypes very effectively. Mean Dicesimilarities coefficient were estimated using RAPD, AFLP and SSR,respectively. The Mantel test resulted in a significant but relatively low fit(RAPD = 0.63, AFLP = 0.60 and SSR = 0.75) of cophenetic values.Comparing the three marker systems to each other, RAPD and AFLP cophenetic indices were highly correlated (r = 0.59), while correlationcoefficient between RAPD and SSR was r = 0.53 and between SSR andAFLP was r = 0.35. For all markers a relatively high similarity indendrogram topologies was obtained although some differences wereobserved. All the dendrograms, including that obtained by the combineduse of all the marker data, reflect some relationships for most of thepopulations according to their geographic conditions. The results indicatethat single or combined marker system could be used to insight into geneticstudy in P. asperata and the combined data of different marker systems canprovide more reliable information.
Resumo:
Marine sponges (Porifera) possess an extraordinary diversity of bioactive metabolites for new drug discovery and development. In vitro cultivation of sponge cells in a bioreactor system is very attractive for the sustainable production of sponge-derived bioactive metabolites; however, it is still a challenging task. The recent establishment of sponge primmorphs, multicellular aggregates from dissociated mixed-cell population (MCP), has been widely acknowledged to hold great promise for cultivation in vitro. Here we present a new method to establish an in vitro sponge primmorph culture from archaeocyte-dominant cell population (ADCP) enriched by a Ficoll gradient, rather than a mixed-cell population (MCP). Our rationale is based upon the totipotency (the ability of a cell to differentiate into other cell types) of archaeocyte cells and the different biological functions of various sponge cell types. A sponge, Hymeniacidon perleve collected from the China Yellow Sea was used as a model system for this investigation. Distinct dynamics of primmorph formation were observed while significant increases in DNA synthesis, cell proliferation (up to threefold), and cell growth (up to fourfold) were achieved. Furthermore, a time-dependent spiculogenesis was clearly demonstrated in our longterm culture, indicating high metabolic activity of primmorphs from the ADCP. This new method represents an important step forward to advance sponge cell culture in vitro that may lead to commercial exploitation of sponge-derived drugs. (C) 2003 Wiley Periodicals, Inc.