879 resultados para Pneumatic Tires.
Resumo:
Several roads in Iceland with bio-oil modified surface dressings exhibited severe distresses such as bleeding, binder drain down, and eventually as surface dressing sticking to tires. Samples from six road sections were evaluated in the laboratory to determine the causes of the failure. Binders with and without bio-oil, rapeseed oil and fish oil, were evaluated through a comprehensive rheological and chemical characterization. Both oils, exhibited solubility issues with the bitumen; consequently, the oils covered the aggregates, preventing bonding between binder and stones. It appears that fish oil worked a little better than rapeseed oil for binder modification.
Resumo:
Drying is a major and challenging step in the pre-treatment of biomass for production of second generation synfuels for transport. The biomass feedstocks are mostly wet and need to be dried from 30 to 60 wt% moisture content to about 10-15 wt%. The present survey aims to define and evaluate a few of the most promising optimised concepts for biomass pre-treatment scheme in the production of second generation synfuels for transport. The most promising commercially available drying processes were reviewed, focusing on the applications, operational factors and emissions of dryers. The most common dryers applied now for biomass in bio-energy plants are direct rotary dryers, but the use of steam drying techniques is increasing. Steam drying systems enable the integration of the dryer to existing energy sources. In addition to integration, emissions and fire or explosion risks have to be considered when selecting a dryer for the plant. In steam drying there will be no gaseous emissions, but the aqueous effluents need often treatment. Concepts for biomass pre-treatment were defined for two different cases including a large-scale wood-based gasification synfuel production and a small-scale pyrolysis process based on wood chips and miscanthus bundles. For the first case a pneumatic conveying steam dryer was suggested. In the second case the flue gas will be used as drying medium in a direct or indirect rotary dryer.
Resumo:
Combustion-generated carbon black nano particles, or soot, have both positive and negative effects depending on the application. From a positive point of view, it is used as a reinforcing agent in tires, black pigment in inks, and surface coatings. From a negative point of view, it affects performance and durability of many combustion systems, it is a major contributor of global warming, and it is linked to respiratory illness and cancer. Laser-Induced Incandescence (LII) was used in this study to measure soot volume fractions in four steady and twenty-eight pulsed ethylene diffusion flames burning at atmospheric pressure. A laminar coflow diffusion burner combined with a very-high-speed solenoid valve and control circuit provided unsteady flows by forcing the fuel flow with frequencies between 10 Hz and 200 Hz. Periodic flame oscillations were captured by two-dimensional phase-locked LII images and broadband luminosity images for eight phases (0° – 360°) covering each period. A comparison between the steady and pulsed flames and the effect of the pulsation frequency on soot volume fraction in the flame region and the post flame region are presented. The most significant effect of pulsing frequency was observed at 10 Hz. At this frequency, the flame with the lowest mean flow rate had 1.77 times enhancement in peak soot volume fraction and 1.2 times enhancement in total soot volume fraction; whereas the flame with the highest mean flow rate had no significant change in the peak soot volume fraction and 1.4 times reduction in the total soot volume fraction. A correlation (fvRe-1 = a + b·Str) for the total soot volume fraction in the flame region for the unsteady laminar ethylene flames was obtained for the pulsation frequency between 10 Hz and 200 Hz, and the Reynolds number between 37 and 55. The soot primary particle size in steady and unsteady flames was measured using the Time-Resolved Laser-Induced Incandescence (TIRE-LII) and the double-exponential fit method. At maximum frequency (200 Hz), the soot particles were smaller in size by 15% compared to the steady case in the flame with the highest mean flow rate.
Resumo:
An increase in the demand for the freight shipping in the United States has been predicted for the near future and Longer Combination Vehicles (LCVs), which can carry more loads in each trip, seem like a good solution for the problem. Currently, utilizing LCVs is not permitted in most states of the US and little research has been conducted on the effects of these heavy vehicles on the roads and bridges. In this research, efforts are made to study these effects by comparing the dynamic and fatigue effects of LCVs with more common trucks. Ten Steel and prestressed concrete bridges with span lengths ranging from 30’ to 140’ are designed and modeled using the grid system in MATLAB. Additionally, three more real bridges including two single span simply supported steel bridges and a three span continuous steel bridge are modeled using the same MATLAB code. The equations of motion of three LCVs as well as eight other trucks are derived and these vehicles are subjected to different road surface conditions and bumps on the roads and the designed and real bridges. By forming the bridge equations of motion using the mass, stiffness and damping matrices and considering the interaction between the truck and the bridge, the differential equations are solved using the ODE solver in MATLAB and the results of the forces in tires as well as the deflections and moments in the bridge members are obtained. The results of this study show that for most of the bridges, LCVs result in the smallest values of Dynamic Amplification Factor (DAF) whereas the Single Unit Trucks cause the highest values of DAF when traveling on the bridges. Also in most cases, the values of DAF are observed to be smaller than the 33% threshold suggested by the design code. Additionally, fatigue analysis of the bridges in this study confirms that by replacing the current truck traffic with higher capacity LCVs, in most cases, the remaining fatigue life of the bridge is only slightly decreased which means that taking advantage of these larger vehicles can be a viable option for decision makers.
Resumo:
Combustion-generated carbon black nano particles, or soot, have both positive and negative effects depending on the application. From a positive point of view, it is used as a reinforcing agent in tires, black pigment in inks, and surface coatings. From a negative point of view, it affects performance and durability of many combustion systems, it is a major contributor of global warming, and it is linked to respiratory illness and cancer. Laser-Induced Incandescence (LII) was used in this study to measure soot volume fractions in four steady and twenty-eight pulsed ethylene diffusion flames burning at atmospheric pressure. A laminar coflow diffusion burner combined with a very-high-speed solenoid valve and control circuit provided unsteady flows by forcing the fuel flow with frequencies between 10 Hz and 200 Hz. Periodic flame oscillations were captured by two-dimensional phase-locked LII images and broadband luminosity images for eight phases (0°- 360°) covering each period. A comparison between the steady and pulsed flames and the effect of the pulsation frequency on soot volume fraction in the flame region and the post flame region are presented. The most significant effect of pulsing frequency was observed at 10 Hz. At this frequency, the flame with the lowest mean flow rate had 1.77 times enhancement in peak soot volume fraction and 1.2 times enhancement in total soot volume fraction; whereas the flame with the highest mean flow rate had no significant change in the peak soot volume fraction and 1.4 times reduction in the total soot volume fraction. A correlation (ƒv Reˉ1 = a+b· Str) for the total soot volume fraction in the flame region for the unsteady laminar ethylene flames was obtained for the pulsation frequency between 10 Hz and 200 Hz, and the Reynolds number between 37 and 55. The soot primary particle size in steady and unsteady flames was measured using the Time-Resolved Laser-Induced Incandescence (TIRE-LII) and the double-exponential fit method. At maximum frequency (200 Hz), the soot particles were smaller in size by 15% compared to the steady case in the flame with the highest mean flow rate.
Resumo:
In control loops valve stiction is a very common problem. Generally, it is one of main causes of poor performance of industrial systems. Its most commonly observed effect is oscillation in the process variables. To circumvent the undesirable effects, friction compensators have been proposed in order to reduce the variability in the output. This work analyzes the friction compensation in pneumatic control valves by using feedback linearization technique. The valve model includes both dead zone and jump. Simulations show that the use of this more complete model results in controllers with superior performance. The method is also compared through simulations with the method known as Constant Reinforcement (CR), widely used in this problem.
Resumo:
Science application has faced problems in the process of training and cognizant thinking subjects in their actions. Thus, this work is justified in order to reorganize the contents of this area of knowledge. Thus, the research entitled "Plantation School: generating themes and teaching moments in teaching of science" was developed with a group of 6th grade of elementary school, from the planting of vegetables in tires without usefulness, with purpose of building meanings and scientific concepts to students. This work was based on sociointeractionist perspective of Vygotsky (1996, 1998), education for thematic research Freire (1983, 1996) as well as in problem-solving situations identified by the methodology of Pedagogical Moments Delizoicov and Angoti (1992; 2002 ) which together corroborated for the construction of a proposed teaching and learning, curriculum reorganization and significance of scientific concepts. Thus, the project breaks in practice with the linearity of the contents, to develop and analyze themes mediated by pedagogical moments, in order to ascertain the contribution of this methodological resource for the teacher's work, with regard to the understanding of scientific concepts by students. Thus, lesson plans were built based on the study situation "Horta School" and Themes Generators "human interaction with the environment", "photosynthesis", "Ecology and Nutrition of living beings", culminating in the work proposal developed in the classroom. From these themes, the contents were worked through pedagogical moments, which are organized into three stages: questioning, organization / systematization of knowledge and application / contextualization of knowledge. Thus, within each Theme Generator activities were planned which resulted in the involvement of students in learning scientific concepts, such as the issue of sustainability, environmental pollution, nutrition of living beings and the decomposition of organic matter. This work led and motivated student participation in Themes generators, and allows greater interaction between teacher-student and student among his peers, through dialogism established in the classroom, which promoted a more meaningful learning for students.
Resumo:
Biofouling, the accumulation of biomolecules, cells, organisms and their deposits on submerged and implanted surfaces, is a ubiquitous problem across various human endeavors including maritime operations, medicine, food industries and biotechnology. Since several decades, there have been substantial research efforts towards developing various types of antifouling and fouling release approaches to control bioaccumulation on man-made surfaces. In this work we hypothesized, investigated and developed dynamic change of the surface area and topology of elastomers as a general approach for biofouling management. Further, we combined dynamic surface deformation of elastomers with other existing antifouling and fouling-release approaches to develop multifunctional, pro-active biofouling control strategies.
This research work was focused on developing fundamental, new and environment-friendly approaches for biofouling management with emphasis on marine model systems and applications, but which also provided fundamental insights into the control of infectious biofilms on biomedical devices. We used different methods (mechanical stretching, electrical-actuation and pneumatic-actuation) to generate dynamic deformation of elastomer surfaces. Our initial studies showed that dynamic surface deformation methods are effective in detaching laboratory grown bacterial biofilms and barnacles. Further systematic studies revealed that a threshold critical surface strain is required to debond a biofilm from the surface, and this critical strain is dependent on the biofilm mechanical properties including adhesion energy, thickness and modulus. To test the dynamic surface deformation approach in natural environment, we conducted field studies (at Beaufort, NC) in natural seawater using pneumatic-actuation of silicone elastomer. The field studies also confirmed that a critical substrate strain is needed to detach natural biofilm accumulated in seawater. Additionally, the results from the field studies suggested that substrate modulus also affect the critical strain needed to debond biofilms. To sum up, both the laboratory and the field studies proved that dynamic surface deformation approach can effectively detach various biofilms and barnacles, and therefore offers a non-toxic and environmental friendly approach for biofouling management.
Deformable elastomer systems used in our studies are easy to fabricate and can be used as complementary approach for existing commercial strategies for biofouling control. To this end, we aimed towards developed proactive multifunctional surfaces and proposed two different approaches: (i) modification of elastomers with antifouling polymers to produce multifunctional, and (ii) incorporation of silicone-oil additives into the elastomer to enhance fouling-release performance.
In approach (i), we modified poly(vinylmethylsiloxane) elastomer surfaces with zwitterionic polymers using thiol-ene click chemistry and controlled free radical polymerization. These surfaces exhibited both fouling resistance and triggered fouling-release functionalities. The zwitterionic polymers exhibited fouling resistance over short-term (∼hours) exposure to bacteria and barnacle cyprids. The biofilms that eventually accumulated over prolonged-exposure (∼days) were easily detached by applying mechanical strain to the elastomer substrate. In approach (ii), we incorporated silicone-oil additives in deformable elastomer and studied synergistic effect of silicone-oils and surface strain on barnacle detachment. We hypothesized that incorporation of silicone-oil additive reduces the amount of surface strain needed to detach barnacles. Our experimental results supported the above hypothesis and suggested that surface-action of silicone-oils plays a major role in decreasing the strain needed to detach barnacles. Further, we also examined the effect of change in substrate modulus and showed that stiffer substrates require lower amount of strain to detach barnacles.
In summary, this study shows that (1) dynamic surface deformation can be used as an effective, environmental friendly approach for biofouling control (2) stretchable elastomer surfaces modified with anti-fouling polymers provides a pro-active, dual-mode approach for biofouling control, and (3) incorporation of silicone-oils additives into stretchable elastomers improves the fouling-release performance of dynamic surface deformation technology. Dynamic surface deformation by itself and as a supplementary approach can be utilized biofouling management in biomedical, industrial and marine applications.
Resumo:
The continuous sediment record from Lake El'gygytgyn in the northeastern Eurasian Arctic spans the last 3.6 Ma and for much of this time permafrost dynamics and lake level changes have likely played a crucial role for sediment delivery to the lake. Changes in the ground-ice hydrochemical composition (d18O, dD, pH, electrical conductivity, Na+, Mg2+, Ca2+, K+, HCO3-, Cl-, SO4-) of a 141 m long permafrost record from the western crater plain are examined to reconstruct repeated periods of freeze and thaw at the lake edge. Stable water isotope and major ion records of ground ice in the permafrost reflect both a synsedimentary palaeo-precipitation signal preserved in the near-surface permafrost (0.0-9.1 m core depth) and a post-depositional record of thawing and refreezing in deeper layers of the core (9.1-141.0 m core depth). These lake marginal permafrost dynamics were controlled by lake level changes that episodically flooded the surfaces and induced thaw in the underlying frozen ground. During times of lake level fall these layers froze over again. At least three cycles of freeze and thaw are identified and the hydrochemical data point to a vertical and horizontal talik refreezing through time. Past permafrost thaw and freeze may have destabilised the basin slopes of Lake El'gygytgyn and this has probably promoted the release of mass movements from the lake edge to the deeper basin as known from frequently occurring turbidite layers in the lake sediment column.
Resumo:
Die dynamische Standsicherheit ist beim Betrieb eines Gegengewichtsgabelstaplers eine entscheidende Größe. Diese wird neben der Position des Gesamtschwerpunktes und den geometrischen Abmaßen wesentlich von den Reifeneigenschaften bestimmt. Ein neues Rechenmodell der Super-Elastik-Reifen ermöglicht genauere Simulationen, tiefere Einblicke in das dynamische Verhalten der Fahrzeuge bei der Auslegung und somit bessere dynamische Standsicherheit.
Resumo:
In diesem Artikel werden zwei unterschiedliche Integrations- und Sensorkonzepte zur drahtlosen Erfassung der Belastung und Temperatur innerhalb eines Vollgummireifens für Flurförderzeuge beschrieben. Anhand der während des Fahrzeugbetriebs gesammelten Messdaten sollen Reifenschäden durch thermische Überlastung und Unfälle durch kippende Fahrzeuge vermieden werden.