996 resultados para Plasmonic Nanoparticles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a simple method of preparing {SiO2/Ru-(bPY)(3)(2+)}(n) multilayer films was described. Positively charged tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) and negatively charged SiO2 nanoparticles were assembled on ITO electrodes by a layer-by-layer method. Electrochemical and electrogenerated chemiluminescence (ECL) behaviors of the {SiO2/Ru(bpy)(3)(2+)}(n) multilayer film-modified electrodes were studied. Cyclic voltammetry, UV-visible spectroscopy, quartz crystal microbalance, and ECL were adopted to monitor the regular growth of the multilayer films. The multilayer films containing Ru(bpy)(3)(2+) was used for ECL determination of TPA, and the sensitivity was more than 1 order of magnitude higher than that observed for previous reported immobilization methods for the determination of TPA. The multilayer films also showed better stability for one month at least. The high sensitivity and stability mainly resulted from the high surface area and special structure of the silica nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gold nanoparticles (3.1-5.0 nm in size) surface-derivatized with both electroactive and nonelectroactive self-assembled monolayers were synthesized. The surface-derivatized electroactive particles can be easily oxidized/reduced at an electrode surface based on the diffusion-controlled current-voltage curve observed in cyclic voltammetry measurements. Spectroelectrochemical investigation demonstrated that the maximum absorbance of the nanoparticles in their oxidized state red-shifted compared with their reduced state to a different extent according to their size distribution. In the case of the particles surface-derivatized with nonelectroactive monolayers, much less shift was observed. This study showed that surface plasmon absorbance of gold nanoparticles was not only related to core charge states but was also influenced by surface charge states as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical and electrogenerated chemiluminescence of Ru(bpy)(3)(2+) immobilized in {clay/Ru(bpy)(3)(2+)}(n) multilayer films by layer-by-layer assembly were investigated. The stable multilayer films of clay and Ru(bpy)(3)(2+) were assembled by alternate adsorption of negatively charged clay platelets and positively charged Ru(bpy)(3)(2+) from their aqueous dispersions. UV-vis spectroscopy, quartz crystal microbalance (QCM), cyclic voltammetry, and electrogenerated chemiluminescence (ECL) were used to monitor the immobilization of Ru( bpy)(3)(2+) and the regular growth of the {clay/Ru( bpy)(3)(2+)}(n) multilayer films. The multilayer films modified electrode was used for the ECL detection of tripropylamine ( TPA) and oxalate. The proposed novel immobilized method exhibited good stability, reproducibility and high sensitivity for the determination of TPA and oxalate, which mainly resulted from the contributing of clay nanoparticles with appreciable surface area, special structural features and unusual intercalation properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three fully amorphous comb-branch polymers based on poly(styrene-co-maleic anhydride) as a backbone and poly(ethylene glycol) methyl ether of different molecular weights as side chains were synthesized. SiO2 nanoparticles of various contents and the salt LiCF3SO3 were added to these comb-branch polymers to obtain nanocomposite polymer electrolytes. The thermal and transport properties of the samples have been characterized. The maximum conductivity of 2.8x10(-4) S cm(-1) is obtained at 28 degreesC. In the system the longer side chain of the comb-branch polymer electrolyte increases in ionic conductivity after the addition of nanoparticles. To account for the role of the ceramic fillers in the nanocomposite polymer electrolyte, a model based on a fully amorphous comb-branch polymer matrix in enhancing transport properties of Li+ ions is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver nanoparticles were synthesized by the use of a two-armed polymer with a crown ether core [poly(styrene)]-dibenzo-18-crown-6-[poly(styrene)] based on the flexibility of the polymer chains and the complex effect of crown ether with Ag+ and Ag. The size of silver nanoparticles could be tailored by controlling the initial concentrations of the polymer and Ag+, and the molecular weight of the polymer. The emission of silver nanoparticles was blue-shifted, and the intensity of the photoluminescence of silver nanoparticles stabilized by the polymer was significantly increased due to the complex effect between the crown ether embedded in the polymer and the silver nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method for fabrication of horseradish peroxidase (HRP) biosensor has been developed by self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) (St-co-AA) nanospheres. At first, a cleaned gold electrode was immersed in thiol-functionalized poly(St-co-AA) nanosphere latex prepared by emulsifier-free emulsion polymerization of St with AA and function with dithioglycol to assemble the nanospheres, then gold nanoparticles were chemisorbed onto the thiol groups. Finally, horseradish peroxi- dase was immobilized on the surface of the gold nanoparticles. The sensor displayed an excellent electrocatalytical response to reduction of H2O2 without the aid of an electron mediator. The sensor was highly sensitive to hydrogen peroxide with a detection limit of 4.0 mumol l(-1), and the linear range was from 10.0 mumol l(-1) to 7.0 mmol l(-1). The biosensor retained more than 97.8% of its original activity after 60 days of use. Moreover, the Studied biosensor exhibited good current repeatability and good fabrication reproducibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erbium-doped BaF2 nanoparticles were prepared from the microemulsion of cetyl trimethyl ammonium bromide (CTAB), n-butanol, n-octane and water. The X-ray diffraction (XRD) patterns were indexed to a pure BaF2 cubic phase. Transmission electron microscopy (TEM) images showed that BaF2 products were monodispersed with 15-20 nm in size at the dopant concentration of 0.06 mol%. At higher dopant concentration, there was no significant increase in particle size, but more polydispersed. Photoluminescence (PL) properties of the final products were examined. We can observe fluorescence of Er3+ around 1540 nm and with the increase of dopant concentration, the fluorescent intensity increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CeF3 and lutetium-doped CeF3 nanoparticles with the dopant concentration of 17, 25, 30, 42 and 50 mol% (molar ratio, Lu/Ce) were synthesized. XRD patterns were indexed to a pure CeF3 hexagonal phase even under the dopant concentration of 50 mol%. Environmental scanning electron microscopy-field emission gun (ESEM-FEG) was used to characterize the morphology of the final products. From the luminescence spectra of the products, we can get a broad emission ranging from 290 to 400 nm with peak at 325 nm. Lutetium-doping increases the luminescence intensity. We got. the most intense luminescence at the dopant concentration of 30 mol%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple, green method was developed for the synthesis of gold and silver nanoparticles by using polysaccharides as reducing/stabilizing agents. The obtained positively charged chitosan-stabilized gold nanoparticles and negatively charged heparin-stabilized silver nanoparticles were characterized with UV-vis spectroscopy and transmission electron microscopy. The results illustrated the formation of gold and silver nanoparticles inside the nanoscopic polysaccharide templates. Moreover, the morphology and size distribution of prepared gold and silver nanoparticles varied with the concentration of both the polysaccharides and the precursor metal salts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gold nanoparticles were prepared by reducing gold salt with a polysaccharide, chitosan, in the absence/ presence of tripolyphosphate (TPP). Here, chitosan acted as a reducing/stabilizing agent. The obtained gold nanoparticles were characterized with UV-vis spectroscopy and transmission electron microscopy. The results indicated that the shape and size distribution of gold nanoparticles changed with the molecular weight and concentration of chitosan. More interestingly, the gelation of chitosan upon contacting with polyanion (TPP) can also affect the shape and size distribution of gold nanoparticles. By adding TPP to chitosan solution before the reduction of gold salt, gold nanoparticles have a bimodal size distribution, and at the same time, polygonal gold particles were obtained in addition to spherical gold nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO nanowires, nanorods and nanoparticles through modulating the ratio of water to methanol have been synthesized by using a mild and simple solution method. The as-prepared ZnO nanostructures have been characterized by atomic force microscopy and X-ray photoelectron spectroscopy. With the increase of the ratio of water to methanol, the morphology of ZnO nanostructures varied form denser nanowires, to sparse nanowires, to nanorods, and then to nanoparticles. The ratio of water to methanol is supposed to play an important role in the formation of ZnO nanostructures. The mechanism of formation is related to the chemical potential, which is simply proportional to their surface ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Letter, P-cyclodextrin (P-CD) was employed as stabilizer in the synthesis of gold nanoparticles. Gold nanoparticles were synthesized by the reduction of HAuCl4 by NaBH4 in the presence of P-CD. Varying the ratio of P-Cl) to HAuCl4, isolated gold nanoparticles could be assembled into nanowires. The nanoparticles and nanowires were characterized by transmission electron microscopy, UV/visible spectroscopy, infrared spectroscopy and X-ray photoelectron spectroscopy. The decreased relative intensity of skeletal and ring vibration in FT-IR spectra and the negative shift of the Au4f(7/2) binding energy in XPS spectra confirmed that beta-CD was chemisorped on An nanoparticles via hydroxyl group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple thermal process for the preparation of small Pt nanoparticles is presented, carried out by heating a H-2-PtCl6/3- thiophenemalonic acid aqueous solution. The following treatment of such colloidal Pt solution with Ru( bpy)(3)(2+) causes the assembly of Pt nanoparticles into aggregates. Most importantly, directly placing such aggregates on bare solid electrode surfaces can produce very stable films exhibiting excellent electrochemiluminescence behaviors.