949 resultados para Plasma-membrane Transporter
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fertilization in mammals requires the successful completion of a sequence of steps, starting with the transport of gametes in the reproductive tract and ending with sperm-egg membrane fusion to produce a zygote. Although some integrin subunits are known to be associated with the plasma membrane of some mammalian oocytes and spermatozoa, the presence of α6 integrin on bovine oocytes with intact zona pellucida has not been reported. The present study was undertaken to evaluate the expression of α6 integrin subunit in bovine oocyte and to determine if in vitro binding to the zona pellucida and fertilization were affected by treating oocytes with α6 integrin subunit antibody. The α6 integrin subunit was identified on the bovine oocyte by immunocytochemistry. In vitro fertilization was significantly decreased when in vitro matured bovine oocytes were pre-incubated with α6 integrin subunit antibody at concentration 5 and 20 μg/mL, and spermoocyte binding increased. These studies demonstrated the presence of α6 integrin subunit on bovine oocyte, and its importance in fertilization and polyspermy.
Resumo:
This study evaluated the use of hipoosmotic swelling test (HOST) with deionized water (0 mOsmol), as a method of post thaw ram semen evaluation and correlate their findings with different techniques of semen evaluation. Therefore, twenty semen samples of 20 different adult rams were assessed as for kinetic sperm parameters through computerized system (IVOS 12, Hamiton Thorn Biosciences, Beverly, MA, EUA) and subjective analysis. The sperm membranes viability was carried out by the association of fluorescent probes (propidium iodide, JC-1 and FITC-PSA). The structural integrity of the plasma membrane was also studied through supravital test with eosin and the functional integrity of membrane evaluated by doing the hipoosmotic swelling test with deionized water (0 mOsmol), in the following proportions: One part of semen for 10 (HOST 10), 50 (HOST 50) and 100 (HOST 100) parts of water. After semen dilution in the different proportions it was fixed in formalin-buffered saline and analyzed with regard to percentage of HOST reactive sperm (bent/coiled). The percentage of reaction obtained for HOST 10 (33,1%); HOST 50 (32,8%) and HOST 100 (31,8%) did not differ significantly. HOST 10 presented positive correlation with the plasma membrane integrity by the EOS (r = 0,80; p < 0,05). Positive correlations between HOST 50 and HOST 100 with sperm subpopulation with membrane integrity by fluorescence were observed (r = 0,83 and r = 0,85; p < 0,01). The findings suggest that the HOST with deionized water can provide additional information for post thawing ram sperm viability evaluation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The development of a reliable technique to freeze epididymal semen would provide a unique opportunity to preserve valuable genetic material from unexpectedly lost stallions. The aim of this study was to compare the apoptotic indices of sperm obtained from ejaculate, sperm recently recovered from the epididymides (EP), and sperm recovered from epididymides stored at 5 C for 24 hours (EP-stored). For the first category, two ejaculates from seven stallions were collected and then submitted to cryopreservation using an egg yolk-based extender. One week after the last semen collection, the stallions were submitted to bilateral orchiectomy, and sperm from one of the cauda epididymis was harvested immediately after castration (EP). The remaining testicle was stored in a passive refrigeration container at 5 C for 24 hours before the cauda epididymal sperm was harvested (EP-stored). Sperm harvesting from the epididymis for EP and EP-stored was performed by retrograde flushing of the caudal portion of the epididymis using a skim milk-based extender. The recovered sperm was then cryopreserved using the egg yolk-based extender. Sperm motility parameters were studied by computerassisted semen analysis, and apoptosis was estimated by measuring caspase activity and membrane phospholipid translocation using epifluorescence microscopy. The samples were evaluated immediately (0 hour) and 8 hours after thawing. At 0 hour, no differences in sperm parameters were observed among the groups, but after 8 hours, significant statistical differences were observed in sperm motility parameters and plasma membrane integrity among the treatment groups. In addition, viable cells with no apoptotic signs were more prevalent in EP and EP-stored, suggesting that epididymal sperm is less sensitive to the cold shock caused by sperm cryopreservation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Iptakalim is a novel putative adenosine triphosphate (ATP)-sensitive potassium (KATP) channel opener. In the brain, iptakalim is thought to act on the neuronal and astrocytic plasma membrane and/or mitochondrial KATP channels. Because iptakalim demonstrates an action on the regulation of dopamine and glutamate release in the forebrain regions, we examined its potential antipsychotic efficacy in several preclinical tests. First, we show that iptakalim is effective in reducing amphetamine- and phencyclidine-induced hyperlocomotion as well as selectively disrupting conditioned avoidance responding. Next, we show that combined iptakalim and amphetamine treatment produces a reduction on prepulse inhibition of acoustic startle and this combined drug effect is also found with haloperidol, but not with clozapine. Finally, we show that iptakalim and clozapine preferentially increase c-Fos expression in the medial prefrontal cortex, nucleus accumbens and lateral septal nucleus, whereas haloperidol induces a greater increase in the nucleus accumbens, the dorsolateral striatum and lateral septal nucleus. Collectively, our findings indicate that iptakalim is likely to be a potential antipsychotic drug with distinct mechanisms of action. This study also suggests that neuronal and astrocytic plasma membrane and/or mitochondrial KATP channels may be a novel target that deserves attention for antipsychotic drug development. Future research using other sensitive tests is needed to confirm this property of iptakalim.
Resumo:
We recently demonstrated that Angiotensin-(3-4) [Ang-(3-4)], an Ang II-derived dipeptide, overcomes inhibition of plasma membrane Ca2+-ATPase promoted by nanomolar concentrations of Ang II in basolateral membranes of renal proximal tubule cells, with involvement of a so far unknown AT(2)R-dependent and NO-independent mechanism. The present study investigates the signaling pathway triggered by Ang-(3-4) that is responsible for counteracting the inhibitory effect of Ang II, and attempts to elucidate the functional interaction of the dipeptide with Ang II at the level of AT(2)R. Stimulation by cholera toxin of G(s)alpha protein structurally linked to AT(2)R as revealed by their co-immunoprecipitation mimicked the effect of Ang-(3-4) on Ca2+-ATPase activity. Furthermore, addition of dibutyril-cAMP (db-cAMP) mimicked Ang-(3-4), whereas the specific PKA inhibitor, PKAi((5-24)) peptide, suppressed the counter-regulatory effect of Ang-(3-4) and the AT(2)R agonist, CGP42112A. Membrane-associated PKA activity was stimulated by Ang-(3-4) or CGP42112A to comparable levels as db-cAMP, and the Ang-(3-4) effect was abrogated by the AT(2)R antagonist PD123319, whereas the AT(1)R antagonist Losartan had no effect. Ang-(3-4) stimulated PKA-mediated phosphorylation of Ca2+-ATPase and activated PKA to comparable levels. Binding assays demonstrated that Ang-(3-4) could not displace H-3-Ang II from HEK 293T cells expressing AT(2)R, but 10(-10) mol/L Ang-(3-4) resulted in the appearance of a probable higher-affinity site (picomolar range) for Ang II. The results presented herein demonstrate that Ang-(3-4), acting as an allosteric enhancer, suppresses Ang II-mediated inhibition of Ca2+-ATPase through an AT(2)R/cAMP/PKA pathway, after inducing conformational changes in AT(2)R that results in generation of higher-affinity sites for Ang II. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The Na+/H+ exchanger isoform 3 (NHE3) is essential for HCO3- reabsorption in renal proximal tubules. The expression and function of NHE3 must adapt to acid-base conditions. The goal of this study was to elucidate the mechanisms responsible for higher proton secretion in proximal tubules during acidosis and to evaluate whether there are differences between metabolic and respiratory acidosis with regard to NHE3 modulation and, if so, to identify the relevant parameters that may trigger these distinct adaptive responses. We achieved metabolic acidosis by lowering HCO3- concentration in the cell culture medium and respiratory acidosis by increasing CO2 tension in the incubator chamber. We found that cell-surface NHE3 expression was increased in response to both forms of acidosis. Mild (pH 7.21 +/- 0.02) and severe (6.95 +/- 0.07) metabolic acidosis increased mRNA levels, at least in part due to up-regulation of transcription, whilst mild (7.11 +/- 0.03) and severe (6.86 +/- 0.01) respiratory acidosis did not up-regulate NHE3 expression. Analyses of the Nhe3 promoter region suggested that the regulatory elements sensitive to metabolic acidosis are located between -466 and -153 bp, where two consensus binding sites for SP1, a transcription factor up-regulated in metabolic acidosis, were localised. We conclude that metabolic acidosis induces Nhe3 promoter activation, which results in higher mRNA and total protein level. At the plasma membrane surface, NHE3 expression was increased in metabolic and respiratory acidosis alike, suggesting that low pH is responsible for NHE3 displacement to the cell surface.
Resumo:
Chronic intake of high-carbohydrate or high-lipid diets is a well-known insulin resistance inducer. This study investigates the immediate effect (1-6 h) of a carbohydrate-or lipid-enriched meal on insulin sensitivity. Fasted rats were refed with standard, carbohydrate-enriched (C), or lipid-enriched (L) meal. Plasma insulin, glucose, and non-esterified fatty acids (NEFA) were measured at 1, 2, 4, and 6 h of refeeding. The glucose-insulin index showed that either carbohydrates or lipids decreased insulin sensitivity at 2 h of refeeding. At this time point, insulin tolerance tests (ITTs) and glucose tolerance tests (GTTs) detected insulin resistance in C rats, while GTT confirmed it in L rats. Reduced glycogen and phosphorylated AKT and GSK3 content revealed hepatic insulin resistance in C rats. Reduced glucose uptake in skeletal muscle subjected to the fatty acid concentration that mimics the high NEFA level of L rats suggests insulin resistance in these animals is mainly in muscle. In conclusion, carbohydrate-or lipid-enriched meals acutely disrupt glycemic homeostasis, inducing a transient insulin resistance, which seems to involve liver and skeletal muscle, respectively. Thus, the insulin resistance observed when those types of diets are chronically consumed may be an evolution of repeated episodes of this transient insulin resistance.
Resumo:
The plant pathogen Fusarium solani causes a disease root rot of common bean (Phaseolus vulgaris) resulting in great losses of yield in irrigated areas of the Southeast and Midwest regions of Brazil. Species of the genus Trichoderma have been used in the biological control of this pathogen as an alternative to chemical control. To gain new insights into the biocontrol mechanism used by Trichoderma harzianum against the phytopathogenic fungus, Fusarium solani, we performed a transcriptome analysis using expressed sequence tags (ESTs) and quantitative real-time PCR (RT-qPCR) approaches. A cDNA library from T. harzianum mycelium (isolate ALL42) grown on cell walls of F. solani (CWFS) was constructed and analyzed. A total of 2927 high quality sequences were selected from 3845 and 37.7% were identified as unique genes. The Gene Ontology analysis revealed that the majority of the annotated genes are involved in metabolic processes (80.9%), followed by cellular process (73.7%). We tested twenty genes that encode proteins with potential role in biological control. RT-qPCR analysis showed that none of these genes were expressed when T. harzianum was challenged with itself. These genes showed different patterns of expression during in vitro interaction between T. harzianum and F. solani. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Cytochemical localization of hydrogen peroxide-generating sites suggests NADPH (nicotinamide adenine dinucleotide 3-phosphate [ reduced form]) oxidase expression at the maternal-fetal interface. To explore this possibility, we have characterized the expression and activity of the NADPH oxidase complex in trophoblast cells during the postimplantation period. Implantation sites and ectoplacental cones (EPCs) from 7.5-gestational day embryos from CD1 mice were used as a source for expression analyses of NADPH oxidase catalytic and regulatory subunits. EPCs grown in primary culture were used to investigate the production of superoxide anion through dihydroxyethidium oxidation in confocal microscopy and immunohistochemical assays. NADPH subunits Cybb (gp91phox), Cyba (p22phox), Ncf4 (p40phox), Ncf1 (p47phox), Ncf2 (p67phox), and Rac1 were expressed by trophoblast cells. The fundamental subunits of membrane CYBB and cytosolic NCF2 were markedly upregulated after phorbol-12-myristate-13-acetate (PMA) treatment, as detected by quantitative real-time PCR, Western blotting, and immunohistochemistry. Fluorescence microscopy imaging showed colocalization of cytosolic and plasma membrane NADPH oxidase subunits mainly after PMA treatment, suggesting assembly of the complex after enzyme activation. Cultured EPCs produced superoxide in a NADPH-dependent manner, associating the NADPH oxidase-mediated superoxide production with postimplantation trophoblast physiology. NADPH-oxidase cDNA subunit sequencing showed a high degree of homology between the trophoblast and neutrophil isoforms of the oxidase, emphasizing a putative role for reactive oxygen species production in phagocytic activity and innate immune responses.
Resumo:
Different types of shed vesicles as, for example, exosomes, plasma-membrane-derived vesicles or microparticles, are the focus of intense research in view of their potential role in cell cell communication and under the perspective that they might be good tools for immunotherapy, vaccination or diagnostic purposes. This review discusses ways employed by pathogenic trypanosomatids to interact with the host by shedding vesicles that contain molecules important for the establishment of infection, as opposed to previous beliefs considering them as a waste of cellular metabolism. Trypanosomatids are compared with Apicomplexa, which circulate parasite antigens bound to vesicles shed by host cells. The knowledge of the origin and chemical composition of these different vesicles might lead to the understanding of the mechanisms that determine their biological function. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
Ferrao FM, Lara LS, Axelband F, Dias J, Carmona AK, Reis RI, Costa-Neto CM, Vieyra A, Lowe J. Exposure of luminal membranes of LLC-PK1 cells to ANG II induces dimerization of AT(1)/AT(2) receptors to activate SERCA and to promote Ca2+ mobilization. Am J Physiol Renal Physiol 302: F875-F883, 2012. First published January 4, 2012; doi:10.1152/ajprenal.00381.2011.-ANG II is secreted into the lumens of proximal tubules where it is also synthesized, thus increasing the local concentration of the peptide to levels of potential physiological relevance. In the present work, we studied the effect of ANG II via the luminal membranes of LLC-PK1 cells on Ca2+-ATPase of the sarco(endo) plasmic reticulum (SERCA) and plasma membrane (PMCA). ANG II (at concentrations found in the lumen) stimulated rapid (30 s) and persistent (30 min) SERCA activity by more than 100% and increased Ca2+ mobilization. Pretreatment with ANG II for 30 min enhanced the ANG II-induced Ca2+ spark, demonstrating a positively self-sustained stimulus of Ca2+ mobilization by ANG II. ANG II in the medium facing the luminal side of the cells decreased with time with no formation of metabolites, indicating peptide internalization. ANG II increased heterodimerization of AT(1) and AT(2) receptors by 140%, and either losartan or PD123319 completely blocked the stimulation of SERCA by ANG II. Using the PLC inhibitor U73122, PMA, and calphostin C, it was possible to demonstrate the involvement of a PLC -> DAG(PMA)-> PKC pathway in the stimulation of SERCA by ANG II with no effect on PMCA. We conclude that ANG II triggers SERCA activation via the luminal membrane, increasing the Ca2+ stock in the reticulum to ensure a more efficient subsequent mobilization of Ca2+. This first report on the regulation of SERCA activity by ANG II shows a new mechanism for Ca2+ homeostasis in renal cells and also for regulation of Ca2+-modulated fluid reabsorption in proximal tubules.