934 resultados para Plant-tissue culture
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The keratin is not degraded by common enzyme, keratinases have the ability to degrade native keratin and others insoluble enzymes. In the present work was Studied keratinase produced by Streptomyces sp LMI-1 isolated from industrial plant of poultry processing. The enzyme degraded 87% of feathers after 120 h, it was stimulated by Ba(2+) and inhibited by Ca(2+), Mn(2+), EDTA and Hg(+). The optimum pH and temperature for the enzyme was 8.5 and 60 degrees C, respectively. The enzyme was stable after 2 hours at 50 degrees C. The culture broth analysis by thin layer chromatography showed presence of amino acids serine, methionine, proline, tyrosine and leucine after 72 hours of incubation. The microorganism showed potential for use in industrial process because of higher enzyme production and feathers degradation.
Resumo:
The aggressive behavior of ants that protect plants from herbivores in exchange for rewards such as shelter or food is thought to be an important form of biotic defense against herbivory, particularly in tropical systems. To date, however, no one has compared the defensive responses of different ant taxa associated with the same plant species, and attempted to relate these differences to longer-term efficacy of ant defense. We used experimental cues associated with herbivory-physical damage and extracts of chemical volatiles from leaf tissue-to compare the aggressive responses of two ant species obligately associated with the Amazonian myrmecophyte Tococa bullifera (Melastomataceae). We also conducted a colony removal experiment to quantify the level of resistance from herbivores provided to plants by each ant species. Our experiments demonstrate that some cues eliciting a strong response from one ant species elicited no response by the other. For cues that do elicit responses, the magnitude of these responses can vary interspecifically. These patterns were consistent with the level of resistance provided from herbivores to plants. The colony removal experiment showed that both ant species defend plants from herbivores: however, herbivory was higher on plants colonized by the less aggressive ant species. Our results add to the growing body of literature indicating defensive ant responses are stimulated by cues associated with herbivory. However, they also suggest the local and regional variation in the composition of potential partner taxa could influence the ecology and evolution of defensive mutualisms in ways that have previously remained unexplored.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Origin and importance. Acerola, or Malpighia emarginata D. C., is native to the Caribbean islands, Central America and the Amazonian region. More recently, it has been introduced in subtropical areas (Asia, India and South America). The vitamin C produced by acerola is better absorbed by the human organism than synthetic ascorbic acid. Exportation of acerola crops is a potential alternative source of income in agricultural businesses. In Brazil, the commercial farming of acerola is quite recent. Climatic conditions. Acerola is a rustic plant. It can resist temperatures close to 0 degrees C, but it is well adapted to temperatures around 26 degrees C with rainfall between (1200 and 1600) mm per year. Fruit characteristics. Acerola fruit is drupaceous, whose form can vary from round to conic. When ripe, it can be red, purple or yellow. The fruit weight varies between (3 and 16) g. Maturation. Acerola fruit presents fast metabolic activity and its maturation occurs rapidly. When commercialised in ambient conditions, it requires fast transportation or the use of refrigerated containers to retard its respiration and metabolism partially. Production and productivity. Flowering and fruiting are typically in cycles associated with rain. Usually, they take place in 25-day cycles, up to 8 times per year. The plant can be propagated by cuttings, grafting or seedlings. Harvest. Fruits produced for markets needs to be harvested at its optimal maturation stage. For distant markets, they need to be packed in boxes and piled up in low layers; transportation should be done in refrigerated trucks in relatively high humid conditions. Biochemical constituents. Acerola is the most important natural source of vitamin C [(1000 to 4500) mg.100(-1) g of pulp], but it is also rich in pectin and pectolytic enzymes, carotenoids, plant fibre, vitamin B, thiamin, riboflavin, niacin, proteins and mineral salts. It has also shown active anti-fungal properties. Products and market. Acerola is used in the production of juice, soft drinks, gums and liqueurs. The USA and Europe are great potential markets. In Europe, acerola extracts are used to enrich pear or apple juices. In the USA, they are used in the pharmaceutical industry. Conclusions. The demand for acerola has increased significantly in recent years because of the relevance of vitamin C in human health, coupled with the use of ascorbic acid as an antioxidant in food and feed. Acerola fruit contains other significant components, which are likely to lead to a further increase in its production and trade all over the world.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We present evidences that ultrastructural electron microscope findings are valuable ways to understand the in vitro regeneration process, in particular in the yellow passion fruit. Shoot-regeneration was induced in hypocotyl and leaf-derived explants using 4.44 mu M BAP, and the entire organogenic process was analyzed using conventional histology, scanning and transmission electronic microscopy. Both direct and indirect regeneration modes were observed in hypocotyl explants, but only direct regeneration occurred in leaf-derived cultures. In the direct pathway from both explant types, meristemoids developed into globular structures, here called protuberances. The peripheral meristematic layers of the protuberances displayed ultrastructural characteristics indicative of a high metabolic activity, and only these cells originated shoots and leaf primordia, the latter being frequent when leaf explants were used. Moreover, the peripheral cells of the protuberances derived from leaf explants lost adhesion during the culture, diminishing the regeneration rates. We recommend the use of hypocotyls as a source of explant to obtain shoots as well as a genetic transformation system for the yellow passion fruit. However, the direct pathway is preferred because a type of amitosis occurred in the peripheral cells of hypocotyl-derived calli, which has the potential to result in genetic instability of the regenerating plants/tissue.
Resumo:
The present work studies Ca, B and Zn omission on the development of soybean plants (Glycine max (L.) Merrill cv Santa Rosa). The experiment was carried out as hydroponic culture, viith complete Hoagland & Arnon nutrient solution nr. 2 (C), lacking calcium (-Ca), lacking boron (-B) or lacking zinc (-Zn), a total of 4 treatments. Seven samplings were made to determine: total dry matter (g), root dry matter (g), stem dry matter (g) and leaf dry matter (g). Results showed that Ca and B omissions decreased dry weight. Lack of Zn did not affect dry weight.
Resumo:
The adaptive capacity of bean (Phaseolus vulgaris L.) calluses (cultivars IAC-carioca, JALO EEP-558, BAT-93 and IAPAR-14) to salt stress (0-80 mM) was verified to determine the existence of biochemical markers such as organic and inorganic compounds, and metabolism of polyamines. The results obtained demonstrate that salt (NaCl) interfered with all the parameters analyzed and its intensity ranged due to the salt concentration and the cultivars used.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The original brachytic population 'Dent Single Cross Composite' (DSCC-br2br2) and a selection-derived sub-population with modified plant architecture (DSCC-br2br2-Lg3Lg3, selected for erect leaves), were evaluated for the following characteristics number of vascular bundles of greater and smaller size, total vascular tissue area (phloem and xylem), sustaining tissue area (vascular tissue plus sclerenchyma), phloem and sclerenchyma areas in apical, medial and basal portions from midclub and in apical and basal sheath regions (from second leaf above and first below ear insertion). These variables had different values for the five different sections studied in each leaf and these differences did not have the same pattern in the two DSCC populations (brachytic and with modified architecture). Selection for architectural modification caused some indirect foliar anatomical modifications. With the exception of the phloem and the vascular tissue areas in apical leaf and sheath base regions, the modified plant architecture population showed smaller values of sustaining tissue area, sclerenchyma area, vascular tissue area and number of smaller vascular bundles than the original one. In the ligule region the modified maize leaves had smaller vascular and sustaining tissue areas, reducing transportation area, which could reduce gram yield.
Resumo:
Calcium chloride concentrations from 0.0 to 12.12 mM were added to the culture medium and calcium content in calluses were determined directly by X-ray fluorescence spectrometry, a non-destructive method, allowing the processing of the same tissue for histological analysis. A multivariate statistical analysis (PCA - Principal Components Analysis) grouped the treatments into 5 blocks and indicated the most responsive group. Lack of calcium supply caused a complete absence of a morphogenic process and tissue collapse. An increase in calcium concentration gave higher total protein and sugar contents, an increase in peroxidase specific activity and changes in the histological characteristics. It was possible to verify that calcium stimulated globular somatic embryo formation at concentration of 6.62 mM.
Resumo:
The leaf-cutting ants forage a wide variety of plant species, used for symbiotic fungus cultivation. To better understand this tripartite complex interaction, 24 colonies of Acromyrmex subterraneus brunneus were conditioned for 4 months to 6 different plants (Citrus spp., Ligustrum spp., Acalypha spp., Eucalyptus spp., Alchornea triplinervia, Melia spp.), to verify the influence of conditioning on foraging behavior of workers. The effect of plants on symbiotic fungus development was studied separately, through macerated plants in Agar and culture medium A as the control. During foraging, workers presented polyphagic foraging behavior, refusing the plants to which they were conditioned. The selection of plants is not correlated with the plant substrate that promotes good development of symbiotic fungus. Such results demonstrate the importance of plant diversity for fungus garden maintenance.