927 resultados para Plant-pathogen interaction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using advanced visualization techniques, a comprehensive visualization of all the stages of the self-organized growth of internetworked nanostructures on plasma-exposed surface has been made. Atomistic kinetic Monte Carlo simulation for the initial stage of deposition, with 3-D visualization of the whole system and half-tone visualization of the density field of the adsorbed atoms, makes it possible to implement a multiscale predictive modeling of the development of the nanoscale system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the use of a local order measure to quantify the spatial ordering of a quantum dot array (QDA). By means of electron ground state energy analysis in a quantum dot pair, it is demonstrated that the length scale required for such a measure to characterize the opto-electronic properties of a QDA is of the order of a few QD radii. Therefore, as local order is the primary factor that affects the opto-electronic properties of an array of quantum dots of homogeneous size, this order was quantified through using the standard deviation of the nearest neighbor distances of the quantum dot ensemble. The local order measure is successfully applied to quantify spatial order in a range of experimentally synthesized and numerically generated arrays of nanoparticles. This measure is not limited to QDAs and has wide ranging applications in characterizing order in dense arrays of nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of electron heating in the high-frequency surface polariton (SP) field on the dispersion properties of the SPs considered is investigated. High frequency SPs propagate at the interface between an n-type semiconductor with finite electron pressure, and a metal. The nonlinear dispersion relation for the SPs is derived and investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear interaction of high-frequency transverse electromagnetic waves normally incident from a plasma region on to a dielectric with two surface waves (SWs) propagating in the opposite directions along the interface is studied. This interaction is found to be stable causing a slight modulation to the SWs in contrast to the decay instability for longitudinal plasma waves. The corresponding nonlinear frequency shift of the SWs is obtained and analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-linear self-interaction of the potential surface polaritons (SP) which is due to the free carriers dispersion law where nonparabolicity is studied. The SP propagate at the interface between n-type semiconductor and a metal. The self interaction of the SP is shown to be different in semiconductors with normal and inverse zone structures. The results of the SP field envelope evolution are given. The obtained nonlinear frequency shift has been compared with shifts which are due to another self-interaction mechanisms. This comparison shows that the nonlinear self-interaction mechanism, which is due to free carriers spectrum nonparabolicity, is especially significant in narrow-gap semiconductor materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate nonlinear self-interacting magnetoplasma surface waves (SW) propagating perpendicular to an external magnetic field at a plasma-metal boundary. We obtain the nonlinear dispersion equation and nonlinear Schroedinger equation for the envelope field of the SW. The solution to this equation is studied with regard to stability relative to longitudinal and transverse perturbations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear effect of hf surface waves self-interaction in a magnetoactive planar plasma waveguide is studies. The waveguide structure under consideration can be formed by gaseous or semiconducting homogeneous plasma, which is limited by a perfectly conducting metal surface. The surface (localized near the surface) wave perturbations propagating on the plasma-metal boundary perpendicular to the constant external magnetic field, are investigated. The nonlinear frequency shift connected with interaction of the second harmonic and static surface perturbations with the main frequency wave, is determined using the approximation of weak nonlinearity. It is shown that the process of double-frequency signal generation is the dissipative one as a result of bulk wave excitation on the surface wave second harmonic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of electron heating in the high-frequency surface magnetoplasma wave(SM) field on dispersion properties of the considered SM is investigated. High frequency SM propagate at the interface between a plasma like medium with a finite electrons pressure and a metal. The nonlinear dispersion relation for the SM is derived and investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drying is a key processing techniques used in food engineering which demands continual developments on advanced analysis techniques in order to optimize the product and the process. In this regard, plant based materials are a frequent subject of interest where microstructural studies can provide a clearer understanding on the fundamental physical mechanisms involved. In this context, considering numerous challenges of using conventional numerical grid-based modelling techniques, a meshfree particle based model was developed to simulate extreme deformations of plant microstructure during drying. The proposed technique is based on a particle based meshfree method: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). A tissue model was developed by aggrading individual cells modelled with SPH-DEM coupled approach by initializing the cells as hexagons and aggregating them to form a tissue. The model also involves a middle lamella resembling real tissues. Using the model, different dried tissue states were simulated with different moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model is capable of simulating plant tissues at lower moisture contents which results in excessive shrinkage and cell wall wrinkling. Model predictions were compared with experimental findings and a fairly good agreement was observed both qualitatively and quantitatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single plant cell was modeled with smoothed particle hydrodynamics (SPH) and a discrete element method (DEM) to study the basic micromechanics that govern the cellular structural deformations during drying. This two-dimensional particle-based model consists of two components: a cell fluid model and a cell wall model. The cell fluid was approximated to a highly viscous Newtonian fluid and modeled with SPH. The cell wall was treated as a stiff semi-permeable solid membrane with visco-elastic properties and modeled as a neo-Hookean solid material using a DEM. Compared to existing meshfree particle-based plant cell models, we have specifically introduced cell wall–fluid attraction forces and cell wall bending stiffness effects to address the critical shrinkage characteristics of the plant cells during drying. Also, a moisture domain-based novel approach was used to simulate drying mechanisms within the particle scheme. The model performance was found to be mainly influenced by the particle resolution, initial gap between the outermost fluid particles and wall particles and number of particles in the SPH influence domain. A higher order smoothing kernel was used with adaptive smoothing length to improve the stability and accuracy of the model. Cell deformations at different states of cell dryness were qualitatively and quantitatively compared with microscopic experimental findings on apple cells and a fairly good agreement was observed with some exceptions. The wall–fluid attraction forces and cell wall bending stiffness were found to be significantly improving the model predictions. A detailed sensitivity analysis was also done to further investigate the influence of wall–fluid attraction forces, cell wall bending stiffness, cell wall stiffness and the particle resolution. This novel meshfree based modeling approach is highly applicable for cellular level deformation studies of plant food materials during drying, which characterize large deformations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Cancer metastasis is the main contributor to breast cancer fatalities as women with the metastatic disease have poorer survival outcomes than women with localised breast cancers. There is an urgent need to develop appropriate prognostic methods to stratify patients based on the propensities of their cancers to metastasise. The insulin-like growth factor (IGF)-I:IGF binding protein (IGFBP):vitronectin complexes have been shown to stimulate changes in gene expression favouring increased breast cancer cell survival and a migratory phenotype. We therefore investigated the prognostic potential of these IGF- and extracellular matrix (ECM) interaction-induced proteins in the early identification of breast cancers with a propensity to metastasise using patient-derived tissue microarrays. Methods: Semiquantitative immunohistochemistry analyses were performed to compare the extracellular and subcellular distribution of IGF- and ECM-induced signalling proteins among matched normal, primary cancer and metastatic cancer formalin-fixed paraffin-embedded breast tissue samples. Results: The IGF- and ECM-induced signalling proteins were differentially expressed between subcellular and extracellular localisations. Vitronectin and IGFBP-5 immunoreactivity was lower while β1 integrin immunoreactivity was higher in the stroma surrounding metastatic cancer tissues, as compared to normal breast and primary cancer stromal tissues. Similarly, immunoreactive stratifin was found to be increased in the stroma of primary as well as metastatic breast tissues. Immunoreactive fibronectin and β1 integrin was found to be highly expressed at the leading edge of tumours. Based on the immunoreactivity it was apparent that the cell signalling proteins AKT1 and ERK1/2 shuffled from the nucleus to the cytoplasm with tumour progression. Conclusion: This is the first in-depth, compartmentalised analysis of the distribution of IGF- and ECM-induced signalling proteins in metastatic breast cancers. This study has provided insights into the changing pattern of cellular localisation and expression of IGF- and ECM-induced signalling proteins in different stages of breast cancer. The differential distribution of these biomarkers could provide important prognostic and predictive indicators that may assist the clinical management of breast disease, namely in the early identification of cancers with a propensity to metastasise, and/or recur following adjuvant therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Realistic plant models are important for leaf area and plant volume estimation, reconstruction of growth canopies, structure generation of the plant, reconstruction of leaf surfaces and agrichemical spray droplet modelling. This article investigates several different scanning devices for obtaining a three dimensional digitisation of plant leaves with a point cloud resolution of 200-500μm. The devices tested were a Roland mdx-20, Microsoft Kinect, Roland lpx-250, Picoscan and Artec S. The applicability of each of these devices for scanning plant leaves is discussed. The most suitable tested digitisation device for scanning plant leaves is the Artec S scanner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of discrimination against 18O during dark respiration in plants is currently accepted as the only reliable method of estimating the partitioning of electrons between the cytochrome and alternative pathways. In this paper, we review the theory of the technique and its application to a gas-phase system. We extend it to include sampling effects and show that the isotope discrimination factor, D, is calculated as –dln(1 + δ)/dlnO*, where δ is isotopic composition of the substrate oxygen and O*=[O2]/[N2] in a closed chamber containing tissue respiring in the dark. It is not necessary to integrate the expression but, if the integrated form is used, the resultant regression should not be constrained through the origin. This is important since any error in D will have significant effects on the estimation of the flux of electrons through the two pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project is led by scientists in conservation decision appraisal and brings together a group of experts working across the Lake Eyre Basin (LEB). The LEB covers a sixth of Australia, with an array of globally significant natural values that are threatened by invasive plants, among other things. Managers at various levels are investing in attempts to control, contain and eradicate these invasive plant species, under severe time and resources limitations. To date there has been no basin-wide assessment of which weed management strategies and locations provide the best investments for maximising outcomes for biodiversity per unit cost. Further, there has been no assessment of the extent of ecosystem intactness that may be lost without effective invasive plant species management strategies. Given that there are insufficient resources to manage all invasive plant species everywhere, this information has the potential to improve current investment decisions. Here, we provide a prioritisation of invasive plant management strategies in the LEB. Prioritisation was based on cost-effectiveness for biodiversity benefits. We identify the key invasive plant species to target to protect ecosystem intactness across the bioregions of the LEB, the level of investment required and the likely reduction in invasive species dominance gained per dollar spent on each strategy. Our focus is on strategies that are technically and socially feasible and reduce the likelihood that high impact invasive plant species will dominate native ecosystems, and therefore change their form and function. The outputs of this work are designed to help guide decision-making and further planning and investment in weed management for the Basin. Experts in weed management, policy-making, community engagement, biodiversity and natural values of the Basin, attended a workshop and agreed upon 12 strategies to manage invasive plants. The strategies focused primarily on 10 weeds which were considered to have a high potential for broad, significant impacts on natural ecosystems in the next 50 years and for which feasible management strategies could be defined. Each strategy consisted of one or more supporting actions, many of which were spatially linked to IBRA (Interim Biogeographical Regionalisation of Australia) bioregions. The first strategy was an over-arching recommendation for improved mapping, information sharing, education and extension efforts in order to facilitate the more specific weed management strategies. The 10 more specific weed management strategies targeted the control and/or eradication of the following high-impact exotic plants: mesquite, parkinsonia, rubber vine, bellyache bush, cacti, mother of millions, chinee apple, athel pine and prickly acacia, as well as a separate strategy for eradicating all invasive plants from one key threatened ecological community, the GAB (Great Artesian Basin dependant) mound springs. Experts estimated the expected biodiversity benefit of each strategy as the reduction in area that an invasive plant species is likely to dominate in over a 50-year period, where dominance was defined as more than 30% coverage at a site. Costs were estimated in present day terms over 50 years largely during follow up discussions post workshop. Cost-effectiveness was then calculated for each strategy in each bioregion by dividing the average expected benefit by the average annual costs. Overall, the total cost of managing 12 invasive plant strategies over the next 50 years was estimated at $1.7 billion. It was estimated that implementation of these strategies would result in a reduction of invasive plant dominance by 17 million ha (a potential 32% reduction), roughly 14% of the LEB. If only targeting Weeds of National Significance (WONS), the total cost was estimated to be $113 million over the next 50 years. Over the next 50 years, $2.3 million was estimated to eradicate all invasive plant species from the Great Artesian Basin Mound Springs threatened ecological community. Prevention and awareness programs were another key strategy targeted across the Basin and estimated at $17.5 million in total over 50 years. The cost of controlling, eradicating and containing buffel grass were the most expensive, over $1.5 billion over 50 years; this strategy was estimated to result in a reduction in buffel grass dominance of a million ha in areas where this species is identified as an environmental problem. Buffel grass has been deliberately planted across the Basin for pasture production and is by far the most widely distributed exotic species. Its management is contentious, having economic value to many graziers while posing serious threats to biodiversity and sites of high cultural and conservation interest. The strategy for containing and locally eradicating buffel grass was a challenge to cost based on expert knowledge, possibly because of the dual nature of this species as a valued pastoral grass and environmental weed. Based on our conversations with experts, it appears that control and eradication programs for this species, in conservation areas, are growing rapidly and that information on the most cost-effective strategies for this species will continue to develop over time. The top five most cost-effective strategies for the entire LEB were for the management of: 1) parkinsonia, 2) chinee apple, 3) mesquite, 4) rubber vine and 5) bellyache bush. Chinee apple and mother of millions are not WONS and have comparatively small populations within the semi-arid bioregions of Queensland. Experts felt that there was an opportunity to eradicate these species before they had the chance to develop into high-impact species within the LEB. Prickly acacia was estimated to have one of the highest benefits, but the costs of this strategy were high, therefore it was ranked 7th overall. The buffel grass strategy was ranked the lowest (10th) in terms of cost effectiveness. The top five most cost-effective strategies within and across the bioregions were the management of: 1) parkinsonia in the Channel Country, 2) parkinsonia in the Desert Uplands, 3) mesquite in the Mitchell Grass Downs, 4) parkinsonia in the Mitchell Grass Downs, and 5) mother of millions in the Desert Uplands. Although actions for several invasive plant species like parkinsonia and prickly acacia were concentrated in the Queensland part of the LEB, the actions involved investing in containment zones to prevent the spread of these species into other states. In the NT and SA bioregions of the LEB, the management of athel pine, parkinsonia and cacti were the main strategies. While outside the scientific research goals of study, this work highlighted a number of important incidental findings that led us to make the following recommendations for future research and implementation of weed management in the Basin: • Ongoing stakeholder engagement, extension and participation is required to ensure this prioritisation effort has a positive impact in affecting on-ground decision making and planning. • Short term funding for weed management was identified as a major reason for failure of current efforts, hence future funding needs to be secure and ongoing. • Improved mapping and information sharing is essential to implement effective weed management. • Due to uncertainties in the outcomes and impacts of management options, strategies should be implemented as part of an adaptive management program. The information provided in this report can be used to guide investment for controlling high-impact invasive plant species for the benefits of biodiversity conservation. We do not present a final prioritisation of invasive plant strategies for the LEB, and we have not addressed the cultural, socio-economic or spatial components necessary for an implementation plan. Cost-effectiveness depends on the objectives used; in our case we used the intactness of ecosystems as a surrogate for expected biodiversity benefits, measured by the extent that each invasive plant species is likely to dominate in a bioregion. When other relevant factors for implementation are considered the priorities may change and some actions may not be appropriate in some locations. We present the costs, ecological benefits and cost-effectiveness of preventing, containing, reducing and eradicating the dominance of high impact invasive plants through realistic management actions over the next 50 years. In doing so, we are able to estimate the size of the weed management problem in the LEB and provide expert-based estimates of the likely outcomes and benefits of implementing weed management strategies. The priorities resulting from this work provide a prospectus for guiding further investment in management and in improving information availability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sewer main chokes (blockages) are a key performance indicator for Australian water utilities. Blockages caused by tree roots often result in wastewater overflow posing an environmental and health risk and also requiring service interruptions to repair asset. The purpose of the research project outlined in this paper was to understand the role of environmental parameters, in particular soil type and tree density, in determining the propensity of a sewer to become blocked. The paper demonstrates the application of spatial analysis to inform and communicate the results of the analysis. GIS was used to explore the relationship between tree density and previously recorded sewer blockages for a Melbourne utility. Initial results from the research reveal a relationship between increased tree densities and occurrence of sewer blockages. An improved understanding of the influence of environmental parameters on the inherent risk of sewer blockage will enable asset managers to identify those assets requiring proactive management in order to minimise service interruptions, repairs and environmental impacts.