984 resultados para Plankton Expedition
Resumo:
Using multiple lines of evidence, we demonstrate that volcanic ash deposition in August 2008 initiated one of the largest phytoplankton blooms observed in the subarctic North Pacific. Unusually widespread transport from a volcanic eruption in the Aleutian Islands, Alaska deposited ash over much of the subarctic NE Pacific, followed by large increases in satellite chlorophyll. Surface ocean pCO2, pH, and fluorescence reveal that the bloom started a few days after ashfall. Ship-based measurements showed increased dominance by diatoms. This evidence points toward fertilization of this normally iron-limited region by ash, a relatively new mechanism proposed for iron supply to the ocean. The observations do not support other possible mechanisms. Extrapolation of the pCO2 data to the area of the bloom suggests a modest ∼0.01 Pg carbon export from this event, implying that even large-scale iron fertilization at an optimum time of year is not very efficient at sequestering atmospheric CO2.
Resumo:
Pronounced changes in fauna, extending from the English Channel in the south to the Barents Sea in the north-east and off Greenland in the north-west, have occurred in the late 1920s, the late 1960s and again in the late 1990s. We attribute these events to exchanges of subarctic and subtropical water masses in the north-eastern North Atlantic Ocean, associated with changes in the strength and extent of the subpolar gyre. These exchanges lead to variations in the influence exerted by the subarctic or Lusitanian biomes on the intermediate faunistic zone in the north-eastern Atlantic. This strong and persistent bottom-up bio-physical link is demonstrated using a numerical ocean general circulation model and data on four trophically connected levels in the food chain – phytoplankton, zooplankton, blue whiting, and pilot whales. The plankton data give a unique basin-scale depiction of these changes, and a long pilot whale record from the Faroe Islands offers an exceptional temporal perspective over three centuries. Recent advances in simulating the dynamics of the subpolar gyre suggests a potential for predicting the distribution of the main faunistic zones in the north-eastern Atlantic a few years into the future, which might facilitate a more rational management of the commercially important fisheries in this region.
Resumo:
Phytoplankton abundance in the NW Atlantic was measured by continuous plankton recorder (CPR) sampling along tracks between Iceland and the western Scotian Shelf from 1998 to 2006, when sea-surface chlorophyll (SSChl) measurements were also being made by ocean colour satellite imagery using the SeaWiFS sensor. Seasonal and inter-annual changes in phytoplankton abundance were examined using data collected by both techniques, averaged over each of four shelf regions and four deep ocean regions. CPR sampling had gaps (missing months) in all regions and in the four deep ocean regions satellite observations were too sparse between November and February to be of use. Average seasonal cycles of SSChl were similar to those of total diatom abundance in seven regions, to those of the phytoplankton colour index in six regions, but were not similar to those of total dinoflagellate abundance anywhere. Large inter-annual changes in spring bloom dynamics were captured by both samplers in shelf regions. Changes in annual (or 8 months) averages of SSChl did not generally follow those of the CPR indices within regions and multi-year averages of SSChl, and the three CPR indices were generally higher in shelf than in deep ocean regions. Remote sensing and CPR sampling provide complementary ways of monitoring phytoplankton in the ocean: the former has superior temporal and spatial coverage and temporal resolution, and the latter provides better taxonomic information.
Resumo:
The results of Continuous Plankton Recorder sampling in the NW Atlantic between 1958 and 2006 are presented for 11 plankton taxa in eight shelf and deep ocean regions. For shelf regions, phytoplankton abundances increased in the early 1990s, mainly in winter, as the contribution of Arctic-derived freshwater to the Newfoundland (NLS) and Scotian shelves (SS) increased. Farther east, in the sub-polar gyre, phytoplankton levels increased with rising temperatures during the 1990s and 2000s. In both areas, the changes can be explained by increased stratification. The increased influx of arctic water to the NLS in the 1990s was also probably directly responsible for the increased abundances of two arctic Calanus species (C. glacialis and C. hyperboreus) and indirectly responsible for the decreased abundance of Calanus I–IV (mainly C. finmarchicus), perhaps via changes in food composition. On the SS the arctic Calanus species increased in abundance in the 2000s, likely as the result of increased transport from the Arctic via the Gulf of St Lawrence. In the deep ocean, plankton seasonal cycles changed little over the decades and increasing phytoplankton levels in the 2000s were accompanied by increases in zooplankton abundance, suggesting bottom-up control. In shelf regions, phytoplankton increases in the 1990s were in winter and Calanus I–IV appeared earlier in spring than in previous decades. Zooplankton levels generally did not change overall however, perhaps because the species examined were mainly inactive during winter.
Resumo:
The number of variables involved in the monitoring of an ecosystem can be high and often one of the first stages in the analysis is to reduce the number of variables. We describe a method developed for geological purposes, using the information theory, that enables selection of the most relevant variables. This technique also allows the examination of the asymmetrical relationships between variables. Applied to a set of physical and biological variables (plankton assemblages in four areas of the North Sea), the method shows that biological variables are more informative than physical variables although the controlling factors are mainly physical (sea surface temperature in winter and spring). Among biological variables, diversity measures and warm-water species assemblages are informative for the state of the North Sea pelagic ecosystems while among physical variables sea surface temperature in late winter and early spring are highly informative. Although often used in bioclimatology, the utilisation of the North Atlantic Oscillation (NAO) index does not seem to provide a lot of information. The method reveals that only the extreme states of this index has an influence on North Sea pelagic ecosystems. The substantial and persistent changes that were detected in the dynamic regime of the North Sea ecosystems and called regime shift are detected by the method and corresponds to the timing of other shifts described in the literature for some European Systems such as the Baltic and the Mediterranean Sea when both physical and biological variables are considered.
Resumo:
Increasing availability and extent of biological ocean time series (from both in situ and satellite data) have helped reveal significant phenological variability of marine plankton. The extent to which the range of this variability is modified as a result of climate change is of obvious importance. Here we summarize recent research results on phenology of both phytoplankton and zooplankton. We suggest directions to better quantify and monitor future plankton phenology shifts, including (i) examining the main mode of expected future changes (ecological shifts in timing and spatial distribution to accommodate fixed environmental niches vs. evolutionary adaptation of timing controls to maintain fixed biogeography and seasonality), (ii) broader understanding of phenology at the species and community level (e.g. for zooplankton beyond Calanus and for phytoplankton beyond chlorophyll), (iii) improving and diversifying statistical metrics for indexing timing and trophic synchrony and (iv) improved consideration of spatio-temporal scales and the Lagrangian nature of plankton assemblages to separate time from space changes.
Resumo:
We present a macrogeographic study of spatial heterogeneity in an important subarctic Pacific copepod and describe the first genetic analysis of population structure using Continuous Plankton Recorder (CPR) samples. Samples of Neocalanus cristatus were collected at a constant depth of similar to 7 m from two CPR tow-routes, (i) an east-west similar to 6500-km transect from Vancouver Island, Canada to Hokkaido Island, Japan, and (ii) a north-south transect of similar to 2250 km from Anchorage, Alaska to Tacoma, Washington. Analysis of these samples revealed three features of the biology of N. cristatus. First, N. cristatus undergoes small-scale diel vertical migration that is larger among stages CV- adult (3-6 times more abundant at 7 m at night), than stages CI-CIV (only 2-4 times higher at night). Secondly, while there were no regions where N. cristatus did not appear, each transect sampled a few large-scale macrogeographic patches. Thirdly, an analysis of molecular variation, using a partial sequence of the N. cristatus cytochrome oxidase I gene, revealed that 7.3% (P < 0.0001) of the total genetic variation among N. cristatus sampled from macrogeographic patches by the CPR could be explained by spatial heterogeneity. We suggest that spatial heterogeneity at macrogeographic scales may be important in plankton evolution.