990 resultados para Phospholipase C-b
Resumo:
Members of the Founders' Committee. Pictured here in a clockwise fashion from the left are: R. L. Hearn, W. J. Freeman, M. A. Chown, M. L. Swart, C. Bruce Hill, C. B. Slemon, Dr. James A. Gibson, D. G. Willmot, J .M. Trott, A. C. Rae, W. B. C. Burgoyne, E. S. Howard, L. R. Williams, S. J. Leishman, E. J. Barbeau, and E. R. Davey. Missing from the photo were: W. B. Gunning, W. S. Martin, C. W. Morehead, and B. P. R. Newman.
Resumo:
Orange Union High School in Orange, California, ca. 1915. Elongated postcard image shows bird's-eye view looking southeast toward the campus. The original academic building in the center was designed by local architect C.B. Bradshaw and completed in July 1905 [now Wilkinson Hall]. The "Twins," identical buildings officially known as the Science and Commercial Buildings[now Reeves Hall and Smith Hall], flank the academic building on the north and south, forming a "U." They were added in 1913 and designed by Santa Ana architect Fred Eley. The 300 block of North Glassell Street runs in front of the buildings and East Palm Avenue is on the south side. Residences can be seen in front and behind the campus. The campus was purchased by Chapman College in 1954.
Resumo:
Orange Union High School in Orange, California, ca. 1915. Elongated postcard image shows bird's-eye view looking southeast toward the campus. The original academic building in the center was designed by local architect C.B. Bradshaw and completed in July 1905 [now Wilkinson Hall]. The "Twins," identical buildings officially known as the Science and Commercial Buildings[now Reeves Hall and Smith Hall], flank the academic building on the north and south, forming a "U." They were added in 1913 and designed by Santa Ana architect Fred Eley. The 300 block of North Glassell Street runs in front of the buildings and East Palm Avenue is on the south side. Residences can be seen in front and behind the campus. The campus was purchased in 1954 by Chapman College.
Resumo:
Wilkinson Hall, Chapman College, Orange, California, looking northwest. J.E. Wilkinson was a former trustee, chairman of the board, and acting president. This building was the first on the campus of Orange Union High Schooi, designed by local architect, C.B. Bradshaw and constructed in 1905 by R. J. Noble. In 1921 it was moved 250 feet and turned 90 degrees to its current location. Acquired in 1954 by Chapman College. it houses the Provost’s office, Academic Affairs, English & Comparative Literature, Graduate Studies, and the departments of Religion and Philosophy. It is listed in the National Registry for Historical Buildings.
Resumo:
Wilkinson Hall and "Gentle Spring" fountain, Chapman College, Orange, California. J.E. Wilkinson was a former trustee, chairman of the board, and acting president. This building was the first on the campus of Orange Union High Schooi, designed by local architect, C.B. Bradshaw and constructed in 1905 by R. J. Noble. In 1921 it was moved 250 feet and turned 90 degrees to its current location. Acquired in 1954 by Chapman College. it houses the Provost’s office, Academic Affairs, English & Comparative Literature, Graduate Studies, and the departments of Religion and Philosophy. It is listed in the National Registry for Historical Buildings.
Resumo:
Wilkinson Hall and "Gentle Spring" fountain, Chapman College, Orange, California. J.E. Wilkinson was a former trustee, chairman of the board, and acting president. This building was the first on the campus of Orange Union High Schooi, designed by local architect, C.B. Bradshaw and constructed in 1905 by R. J. Noble. In 1921 it was moved 250 feet and turned 90 degrees to its current location. Acquired in 1954 by Chapman College. it houses the Provost’s office, Academic Affairs, English & Comparative Literature, Graduate Studies, and the departments of Religion and Philosophy. It is listed in the National Registry for Historical Buildings.
Resumo:
People outside on the grass by Wilkinson Hall, Chapman College, Orange, California. J.E. Wilkinson was a former trustee, chairman of the board, and acting president. This building was the first on the campus of Orange Union High Schooi, designed by local architect, C.B. Bradshaw and constructed in 1905 by R. J. Noble. In 1921 it was moved 250 feet and turned 90 degrees to its current location. Acquired in 1954 by Chapman College. it houses the Provost’s office, Academic Affairs, English & Comparative Literature, Graduate Studies, and the departments of Religion and Philosophy. It is listed in the National Registry for Historical Buildings.
Resumo:
Orange Union High School, located at 333 N. Glassell Street, Orange, California, 1905. Constructed in 1905 and designed by local architect, C.B. Bradshaw, image shows main building, now called Wilkinson Hall, which moved north prior to 1921. Acquired in 1954 and currently operated by Chapman University; it was renamed Wilkinson Hall in honor of J. E. Wilkinson, a former trustee, chairman of the board, and acting president. View shows front and south elevations across North Glassell Street.
Resumo:
Wilkinson Hall, 301 N. Orange Street, Chapman College, Orange, California. J.E. Wilkinson was a former trustee, chairman of the board, and acting president. This building was the first on the campus of Orange Union High Schooi, designed by local architect, C.B. Bradshaw and constructed in 1905 by R. J. Noble. In 1921 it was moved 250 feet and turned 90 degrees to its current location. Acquired in 1954 by Chapman College. it houses the Provost’s office, Academic Affairs, English & Comparative Literature, Graduate Studies, and the departments of Religion and Philosophy. It is listed in the National Registry for Historical Buildings.
Resumo:
The vitamin A metabolite, retinoic acid (RA) is known to play an important role in the development, patterning and regeneration of nervous tissue, both in the embryo and in the adult. Classically, RA is known to mediate the transcription of target genes through the binding and activation ofits nuclear receptors: the retinoic acid receptors (RARs) and retinoid X receptors (RXRs). Recently, mounting evidence from many animal models has implicated a number of RA-mediated effects operating independently of gene transcription, and thus highlights nove~ nongenornic actions of RA. For example, recent work utilizing cultured neurons from the pond snaa Lymnaea stagnalis, has shown that RA can elicit a regenerative response, growth cone turning, independently of "classical" transcriptional activation While this work illustrates a novel regeneration-inducing effect in culture, it is currently -unknown whether RA also induces regeneration in situ. This study has sought to determine RA's regenerative effucts at the morphological and molecular levels by utilizing an in situ approach focusing on a single identified dopaminergic neuron which possesses a known "mapped" morphology within the CNS. These studies show, for the first time in an invertebrate, that RA can increase neurite outgrowth of dopaminergic cells that have undergone a nerve-crush injury. Utilizing Western blot analysis, it was shown that this effect appears to be independent of any changes in whole CNS expression levels of either the RAR or RXR. Additionally, utilizing immunohistochemistry, to examine protein localization, there does not appear to be any obvious changes in the RXR expression level at the crush site. Changes in cell morphology such as neurity extension are known to be modulated by changes in neuronal firing activity. It has been previously shown that exposure to RA over many days can lead to changes in the electrophysiological properties of cultured Lymnaea neurons; however, no studies have investigated whether short-term exposure to RA can elicit electrophysiological changes and/or changes in firing pattern of neurons in Lymnaea or any other species. The studies performed here show, for the first time in any species, that short-tenn treatment with RA can elicit significant changes in the firing properties of both identified dopaminergic neurons and peptidergic neurons. This effect appears to be independent of protein synthesis, activation of protein kinase A or phospholipase C, and calcium influx but is both dose-dependent and isomer-dependent. These studies provide evidence that the RXR, but not RAR, may be involved, and that intracellular calcium concentrations decrease upon RAexposure with a time course, dose-dependency and isomer-dependency that coincide with the RA-induced electrophysiological changes. Taken together, these studies provide important evidence highlighting RA as a multifunctional molecule, inducing morphological, molecular and electrophysiological changes within the CNS, and highlight the many pathways through which RA may operate to elicit its effects.
Resumo:
Adam Beck, chairman. C. B. Smith, chief engineer.
Resumo:
Drosophila melanogaster is a model system for examining the mechanisms of action of neuropeptides. DPKQDFMRFamide was previously shown to induce contractions in Drosophila body wall muscle fibres in a Ca(2+)-dependent manner. The present study examined the possible involvement of a G-protein-coupled receptor and second messengers in mediating this myotropic effect after removal of the central nervous system. DPKQDFMRFamide-induced contractions were reduced by 70% and 90%, respectively, in larvae with reduced expression of the Drosophila Fmrf receptor (FR) either ubiquitously or specifically in muscle tissue, compared with the response in control larvae in which expression was not manipulated. No such effect occurred in larvae with reduced expression of this gene only in neurons. The myogenic effects of DPKQDFMRFamide do not appear to be mediated through either of the two Drosophila myosuppressin receptors (DmsR-1 and DmsR-2). DPKQDFMRFamide-induced contractions were not reduced in Ala1 transgenic flies lacking activity of calcium/calmodulin-dependent protein kinase (CamKII), and were not affected by the CaMKII inhibitor KN-93. Peptide-induced contractions in the mutants of the phospholipase C-β (PLCβ) gene (norpA larvae) and in IP3 receptor mutants were similar to contractions elicited in control larvae. The peptide failed to increase cAMP and cGMP levels in Drosophila body wall muscles. Peptide-induced contractions were not potentiated by 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor, and were not antagonized by inhibitors of cAMP-dependent or cGMP-dependent protein kinases. Additionally, exogenous application of arachidonic acid failed to induce myogenic contractions. Thus, DPKQDFMRFamide induces contractions via a G-protein coupled FMRFamide receptor in muscle cells but does not appear to act via cAMP, cGMP, IP3, PLC, CaMKII or arachidonic acid.
Resumo:
Le réseau neuronal de l’hippocampe joue un rôle central dans la mémoire en modifiant de façon durable l’efficacité de ses synapses. Dans les interneurones de la couche oriens/alveus (O/A), l’induction de la potentialisation à long terme (PLT) requiert les courants postsynaptiques excitateurs évoqués par les récepteurs métabotropes du glutamate de sous-type 1a (CPSEmGluR1a) et l’entrée subséquente de Ca2+ via des canaux de la famille des transient receptor potential (TRP). Le but de ce projet était d’identifier les canaux TRP responsables des CPSEmGluR1a et d’explorer les mécanismes moléculaires régulant leur ouverture. Nous avons déterminé par des enregistrements électrophysiologiques que les CPSEmGluR1a étaient spécifiques aux interneurones O/A et qu’ils étaient indépendants de la phospholipase C. Nous avons ensuite examiné l’expression des TRPC et leur interaction avec mGluR1a par les techniques de RT-PCR, d’immunofluorescence et de co-immunoprécipitation. Nos résultats montrent que TRPC1 et mGluR1a s’associent dans l’hippocampe et que ces deux protéines sont présentes dans les dendrites des interneurones O/A. En revanche, TRPC4 ne semble s’associer à mGluR1a qu’en système recombinant et leur colocalisation paraît limitée au corps cellulaire. Finalement, nous avons procédé à des enregistrements d’interneurones dans lesquels l’expression des TRPC a été sélectivement supprimée par la transfection d’ARN interférant et avons ainsi démontré que TRPC1, mais non TRPC4, est une sous-unité obligatoire du canal responsable des CPSEmGluR1a. Ces travaux ont permis de mieux comprendre les mécanismes moléculaires à la base de la transmission synaptique des interneurones O/A et de mettre en évidence un rôle potentiel de TRPC1 dans la PLT.
Resumo:
Sous le régime du Code civil du Bas-Canada, le devoir d’exécuter le contrat de bonne foi était une condition implicite de tout contrat suivant l’article 1024 C.c.B.C. Le 1er janvier 1994, ce devoir a toutefois été codifié à l’article 1375 du Code civil du Québec. Parallèlement à ce changement, le contrat a subi plusieurs remises en question, principalement en raison des critiques émises contre la théorie de l’autonomie de la volonté. En réponse à ces critiques, la doctrine a proposé deux théories qui supposent une importante coopération entre les contractants durant l’exécution du contrat, à savoir le solidarisme contractuel et le contrat relationnel. La notion de bonne foi a aussi évolué récemment, passant d’une obligation de loyauté, consistant généralement en une abstention ou en un devoir de ne pas nuire à autrui, à une obligation plus active d’agir ou de faciliter l’exécution du contrat, appelée devoir de coopération. Ce devoir a donné lieu à plusieurs applications, dont celles de renseignement et de conseil. Ce mémoire étudie la portée et les limites du devoir de coopération. Il en ressort que le contenu et l’intensité de ce devoir varient en fonction de critères tenant aux parties et au contrat. Une étude plus particulière des contrats de vente, d’entreprise et de franchise ainsi que des contrats conclus dans le domaine informatique indique que le devoir de coopération est plus exigeant lorsque le contrat s’apparente au contrat de type relationnel plutôt qu’au contrat transactionnel. Le créancier peut, entre autres choses, être obligé d’« aider » son débiteur défaillant et même de renégocier le contrat devenu déséquilibré en cours d’exécution, bien que cette dernière question demeure controversée. Le devoir de coopération n’est cependant pas illimité parce qu’il s’agit d’une obligation de moyens et non de résultat. Il est également limité, voire inexistant, lorsque le débiteur de cette obligation est tenu à d’autres obligations comme un devoir de réserve ou de non-ingérence, lorsque le cocontractant est de mauvaise foi ou qu’une partie résilie unilatéralement le contrat ou décide de ne pas le renouveler.
Resumo:
Le système dopaminergique (DA) méso-corticolimbique du cerveau, qui prend son origine dans l'aire tegmentaire ventrale (ATV), est fortement impliqué dans les comportements motivés et la toxicomanie. Les drogues d'abus activent ce système et y induisent une plasticité synaptique de longue durée. Les neurones DA de l'ATV reçoivent sur leur arborisation dendritique une grande densité de terminaisons glutamatergiques. Les drogues d'abus induisent une potentialisation à long terme (PLT) de ces contacts glutamatergiques. La PLT est une augmentation prolongée de la transmission synaptique, qui semble sous-tendre la mémoire et l'apprentissage. Les endocannabinoïdes (ECs) sont des neurotransmetteurs qui agissent de façon rétrograde sur des récepteurs présynaptiques (CB1) pour diminuer la libération des neurotransmetteurs comme le glutamate. Les neurones libèrent les ECs à partir de leur compartiment somatodendritique suite à une stimulation des afférences et la dépolarisation membranaire qui s’ensuit. La neurotensine (NT) est un neuropeptide retrouvé de façon abondante dans le système DA du cerveau. Il a été découvert que la NT peut induire la libération des ECs dans le striatum. En faisant appel à une combinaison d’approches immunohistochimique, électrophysiologique et pharmacologique chez la souris, nous avons confirmé dans la première étude de cette thèse la présence des récepteurs CB1 sur les terminaisons glutamatergiques des neurones DA de l'ATV, et avons montré que leur activation induit une diminution de la libération de glutamate. Par ailleurs, nous avons montré que des trains de stimulation peuvent induire la libération des ECs. Nous avons découvert qu'en présence d'un antagoniste des récepteurs CB1, il y a facilitation de l’induction de la PLT. Cette observation suggère que les ECs ont un effet inhibiteur sur l’induction de la PLT, plutôt que sur son expression. Nous avons déterminé que le 2-arachidonoylglycerol (2-AG) est l’EC qui est principalement responsable de cette action inhibitrice. Finalement, la PLT induite en présence d’un antagoniste CB1 est aussi dépendante d'une activation des récepteurs NMDA du glutamate. Les travaux réalisés dans la deuxième étude de cette thèse ont montré que la NT est présente dans une sous-population de terminaisons axonales glutamatergiques dans l’ATV. Une application exogène de NT induit une diminution prolongée de l'amplitude des courants postsynaptiques excitateurs (CPSEs). Cette diminution est bloquée en présence d'un antagoniste non-sélectif des récepteurs à la NT, ainsi qu'en présence d'un antagoniste sélectif pour le récepteur de NT de type 1 (NTS1). Confirmant l’implication d’une production d’ECs, la baisse des CPSEs par la NT a été bloquée en présence d’un antagoniste des récepteurs CB1 ou d’un bloqueur de la synthèse de 2-AG. La chélation du calcium intracellulaire n'empêchait pas l’effet inhibiteur de la NT sur les CPSEs, cependant, l'inhibition des protéines G ou de la phospholipase C a complètement bloqué la dépression synaptique induite par la NT. Par ailleurs, nos travaux ont montré que la nature prolongée de la dépression synaptique induite par la NT exogène s’explique par une libération soutenue des ECs, et non pas à une activation prolongée des NTR. Finalement, notre observation qu’un antagoniste des récepteurs de la NT ne facilite pas l’induction de la PLT, comme le fait un antagoniste du récepteur CB1, suggère que la stimulation répétitive des afférences glutamatergiques nécessaire à l’induction de la PLT n’induit pas de libération des ECs via la libération de NT, nous permettant ainsi de conclure que la sécrétion de NT n'agit pas dans ces conditions comme un facteur de régulation négative de la PLT.