925 resultados para Phosphate transporter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

LiFePO4 is a Co-free battery material. Its advantages of low cost, non-toxic and flat discharge plateau show promising for vehicle propulsion applications. A major problem associated with this material is its low electrical conductivity. Use of nanosized LiFePO4 coated with carbon is considered a solution because the nanosized particles have much shorter path for L+ ions to travel from the LiFePO4 crystal lattice to electrolytes. As other nano material powders, however, nano LiFePO4 could have processing and health issues. In order to achieve high electrical conductivity while maintaining a satisfactory manufacturability, the particles should possess both of the nano- and the microcharacteristics correspondingly. These two contradictory requirements could only be fulfilled if the LiFePO4 powders have a hierarchical structure: micron-sized parent particles assembled by nanosized crystallites with appropriate electrolyte communication channels. This study addressed the issue by study of the formation and development mechanisms of the LiFePO4 crystallites and their microstructures. Microwaveassisted wet chemical (MAWC) synthesis approach was employed in order to facilitate the evolvement of the nanostructures. The results reveal that the LiFePO4 crystallites were directly nucleated from amorphous precursors by competition against other low temperature phases, Li3PO4 and Fe3(PO4)2•8H2O. Growth of the crystalline LiFePO4 particles went through oriented attachment first, followed by revised Ostwald ripening and then recrystallization. While recrystallization played the role in growth of well crystallized particles, oriented attachment and revised Ostwald ripening were responsible for formation of the straight edge and plate-like shaped LiFePO4 particles comprised of nanoscale substructure. Oriented attachment and revised Ostwald ripening seemed to be also responsible for clustering the plate-like LiFePO4 particles into a high-level aggregated structure. The finding from this study indicates a hope for obtaining the hierarchical structure of LiFePO4 particles that could exhibit the both micro- and nano- scale characteristics. Future study is proposed to further advance the understanding of the structural development mechanisms, so that they can be manipulated for new LiFePO4 structures ideal for battery application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dolomite [CaMg(CO3)2] is an intolerable impurity in phosphate ores due to its MgO content. Traditionally, the Florida phosphate industry has avoided mining high-MgO phosphate reserves due to the lack of an economically viable process for removal of dolomite. However, as the high grade phosphate reserves become depleted, more emphasis is being put on the development of a cost effective method for separating dolomite from high-MgO phosphate ores. In general, the phosphate industry demands a phosphate concentrate containing less than 1%MgO. Dolomite impurities have mineralogical properties that are very similar to the desired phosphate minerals (francolite), making the separation of the two minerals very difficult. Magnesium is primarily found as distinct dolomite-rich pebbles, very fine dolomite inclusions in predominately francolite pebbles, and magnesium substituted into the francolite structure. Jigging is a gravity separation process that attempts to take advantage of the density difference between the dolomite and francolite pebbles. A unique laboratory scale jig was designed and built at Michigan Tech for this study. Through a series of tests it was found that a pulsation rate of 200 pulse/minute, a stroke length of 1 inch, a water addition rate of 0.5gpm, and alumina ragging balls were optimum for this study. To investigate the feasibility of jigging for the removal of dolomite from phosphate ore, two high-MgO phosphate ores were tested using optimized jigging parameters: (1) Plant #1 was sized to 4.00x0.85mm and contained 1.55%MgO; (2) Plant #2 was sized to 3.40mmx0.85mm and contained 3.07% MgO. A sample from each plant was visually separated by hand into dolomite and francolite rich fractions, which were then analyzed to determine the minimum achievable MgO levels. For Plant #1 phosphate ore, a concentrate containing 0.89%MgO was achieved at a recovery of 32.0%BPL. For Plant #2, a phosphate concentrate containing 1.38%MgO was achieved at a recovery of 74.7%BPL. Minimum achievable MgO levels were determined to be 0.53%MgO for Plant #1 and 1.15%MgO for Plant #2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PDZ-binding motifs are found in the C-terminal tails of numerous integral membrane proteins where they mediate specific protein-protein interactions by binding to PDZ-containing proteins. Conventional yeast two-hybrid screens have been used to probe protein-protein interactions of these soluble C termini. However, to date no in vivo technology has been available to study interactions between the full-length integral membrane proteins and their cognate PDZ-interacting partners. We previously developed a split-ubiquitin membrane yeast two-hybrid (MYTH) system to test interactions between such integral membrane proteins by using a transcriptional output based on cleavage of a transcription factor from the C terminus of membrane-inserted baits. Here we modified MYTH to permit detection of C-terminal PDZ domain interactions by redirecting the transcription factor moiety from the C to the N terminus of a given integral membrane protein thus liberating their native C termini. We successfully applied this "MYTH 2.0" system to five different mammalian full-length renal transporters and identified novel PDZ domain-containing partners of the phosphate (NaPi-IIa) and sulfate (NaS1) transporters that would have otherwise not been detectable. Furthermore this assay was applied to locate the PDZ-binding domain on the NaS1 protein. We showed that the PDZ-binding domain for PDZK1 on NaS1 is upstream of its C terminus, whereas the two interacting proteins, NHERF-1 and NHERF-2, bind at a location closer to the N terminus of NaS1. Moreover NHERF-1 and NHERF-2 increased functional sulfate uptake in Xenopus oocytes when co-expressed with NaS1. Finally we used MYTH 2.0 to demonstrate that the NaPi-IIa transporter homodimerizes via protein-protein interactions within the lipid bilayer. In summary, our study establishes the MYTH 2.0 system as a novel tool for interactive proteomics studies of membrane protein complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral ischemia is accompanied by fulminant cellular and humoral inflammatory changes in the brain which contribute to lesion development after stroke. A tight interplay between the brain and the peripheral immune system leads to a biphasic immune response to stroke consisting of an early activation of peripheral immune cells with massive production of proinflammatory cytokines followed by a systemic immunosuppression within days of cerebral ischemia that is characterized by massive immune cell loss in spleen and thymus. Recent work has documented the importance of T lymphocytes in the early exacerbation of ischemic injury. The lipid signaling mediator sphingosine 1-phosphate-derived stable analog FTY720 (fingolimod) acts as an immunosuppressant and induces lymphopenia by preventing the egress of lymphocytes, especially T cells, from lymph nodes. We found that treatment with FTY720 (1mg/kg) reduced lesion size and improved neurological function after experimental stroke in mice, decreased the numbers of infiltrating neutrophils, activated microglia/macrophages in the ischemic lesion and reduced immunohistochemical features of apoptotic cell death in the lesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: This retrospective study reports on histologic and histomorphometric observations performed on human biopsies harvested from sites augmented exclusively by biphasic calcium phosphate [BCP: hydroxyapatite (HA)/ tricalcium phosphate (TCP) 60/40] and healed for a minimum of 6 months. MATERIALS AND METHODS: Five patients benefited from three augmentation regimens (i.e.: one-stage lateral augmentation; two-stage lateral augmentation; and two-stage sinus grafting). In all patients, a degradable collagen membrane served as a cell-occlusive barrier. Core biopsies were obtained from lateral as from crestal aspects 6-10 months after augmentation surgeries. For histologic and histomorphometric evaluations, the non-decalcified tissue processing was performed. RESULTS: The histological examination of 11 biopsies showed graft particles frequently being bridged by the new bone, and a close contact between the graft particles and newly formed bone was seen in all samples. The mean percentages of newly formed bone, soft tissue compartment, and graft material were 38.8% (+/-5.89%), 41.75% (+/-6.08%), and 19.63% (+/-4.85%), respectively. Regarding bone-to-graft contact values, the percentage of bone coverage of graft particles for all biopsies ranged from 27.83% to 80.17%. The mean percentage of bone coverage was 55.39% (+/-13.03%). CONCLUSIONS: Data from the present study demonstrated osteoconductivity scores for the BCP material (HA/TCP 60/40) in patients resembling those previously shown for grafting materials of xenogenic and alloplastic origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dental products with casein phosphopeptide--amorphous calcium phosphate-nanocomplexes (CPP-ACP) are used in several tooth products (toothpastes, chewing gums, mouthrinses) and are as well used in dental filling material. CPP-ACP containing products are supposed to enhance remineralisation of dental hard tissues und thus might play a major role in prevention and therapy of initial caries or erosively dissolved enamel. Furthermore, also in hypersensitive teeth and even cases of hyposalivation, CPP-ACP containig products are supposed to improve the clinical condition. This article aims at three goals: point out the evolvement of CPP-ACP out of milk casein; description of possible biochemical effects of CPP-ACP on dental hard tissues; critical review of the current literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All mitochondria have integral outer membrane proteins with beta-barrel structures including the conserved metabolite transporter VDAC (voltage dependent anion channel) and the conserved protein import channel Tom40. Bioinformatic searches of the Trypanosoma brucei genome for either VDAC or Tom40 identified a single open reading frame, with sequence analysis suggesting that VDACs and Tom40s are ancestrally related and should be grouped into the same protein family: the mitochondrial porins. The single T. brucei mitochondrial porin is essential only under growth conditions that depend on oxidative phosphorylation. Mitochondria isolated from homozygous knockout cells did not produce adenosine-triphosphate (ATP) in response to added substrates, but ATP production was restored by physical disruption of the outer membrane. These results demonstrate that the mitochondrial porin identified in T. brucei is the main metabolite channel in the outer membrane and therefore the functional orthologue of VDAC. No distinct Tom40 was identified in T. brucei. In addition to mitochondrial proteins, T. brucei imports all mitochondrial tRNAs from the cytosol. Isolated mitochondria from the VDAC knockout cells import tRNA as efficiently as wild-type. Thus, unlike the scenario in plants, VDAC is not required for mitochondrial tRNA import in T. brucei.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular uptake of di- and tripeptides has been characterized in numerous organisms, and various transporters have been identified. In contrast, structural information on peptide transporters is very sparse. Here, we have cloned, overexpressed, purified, and biochemically characterized DtpD (YbgH) from Escherichia coli, a prokaryotic member of the peptide transporter family. Its homologues in mammals, PEPT1 (SLC15A1) and PEPT2 (SLC15A2), not only transport peptides but also are of relevance for uptake of drugs as they accept a large spectrum of peptidomimetics such as beta-lactam antibiotics, antivirals, peptidase inhibitors, and others as substrates. Uptake experiments indicated that DtpD functions as a canonical peptide transporter and is, therefore, a valid model for structural studies of this family of proteins. Blue native polyacrylamide gel electrophoresis, gel filtration, and transmission electron microscopy of single-DtpD particles suggest that the transporter exists in a monomeric form when solubilized in detergent. Two-dimensional crystallization of DtpD yielded first tubular crystals that allowed the determination of a projection structure at better than 19 A resolution. This structure of DtpD represents the first structural view of a member of the peptide transporter family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monocarboxylate transporter 8 (MCT8 or SLC16A2) is important for the neuronal uptake of triiodothyronine (T3) in its function as a specific and active transporter of thyroid hormones across the cell membrane, thus being essential for human brain development. We report on a German male with Allan-Herndon-Dudley syndrome presenting with severe intellectual and motor disability, paroxysmal dyskinesia combined with truncal muscular hypotonia, and peripheral muscular hypertonia at his current age of 9 years. Additionally, the patient has a lesion in the left putamen region revealed by magnetic resonance imaging and elevated serum T3 levels. The male appeared to have a hemizygous mutation (R271H) in the MCT8 gene that was sequenced directly from genomic DNA and occurred de novo in the maternal germline, as both his mother and his sister were not carriers of the mutation. Ruling out a common polymorphism, 50 normal individuals of the same ethnic background did not harbour the mutation. The identified MCT8 gene mutation (R271H) is very likely to be the genetic cause for neuronal hypothyroidism despite elevated serum T3 levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The development of arsenical and diamidine resistance in Trypanosoma brucei is associated with loss of drug uptake by the P2 purine transporter as a result of alterations in the corresponding T. brucei adenosine transporter 1 gene (TbAT1). Previously, specific TbAT1 mutant type alleles linked to melarsoprol treatment failure were significantly more prevalent in T. b. gambiense from relapse patients at Omugo health centre in Arua district. Relapse rates of up to 30% prompted a shift from melarsoprol to eflornithine (alpha-difluoromethylornithine, DFMO) as first-line treatment at this centre. The aim of this study was to determine the status of TbAT1 in recent isolates collected from T. b. gambiense sleeping sickness patients from Arua and Moyo districts in Northwestern Uganda after this shift in first-line drug choice. METHODOLOGY AND RESULTS: Blood and cerebrospinal fluids of consenting patients were collected for DNA preparation and subsequent amplification. All of the 105 isolates from Omugo that we successfully analysed by PCR-RFLP possessed the TbAT1 wild type allele. In addition, PCR/RFLP analysis was performed for 74 samples from Moyo, where melarsoprol is still the first line drug; 61 samples displayed the wild genotype while six were mutant and seven had a mixed pattern of both mutant and wild-type TbAT1. The melarsoprol treatment failure rate at Moyo over the same period was nine out of 101 stage II cases that were followed up at least once. Five of the relapse cases harboured mutant TbAT1, one had the wild type, while no amplification was achieved from the remaining three samples. CONCLUSIONS/SIGNIFICANCE: The apparent disappearance of mutant alleles at Omugo may correlate with melarsoprol withdrawal as first-line treatment. Our results suggest that melarsoprol could successfully be reintroduced following a time lag subsequent to its replacement. A field-applicable test to predict melarsoprol treatment outcome and identify patients for whom the drug can still be beneficial is clearly required. This will facilitate cost-effective management of HAT in rural resource-poor settings, given that eflornithine has a much higher logistical requirement for its application.