970 resultados para Phase-stability
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
The GxE interaction only became widely discussed from evolutionary studies and evaluations of the causes of behavioral changes of species cultivated in environments. In the last 60 years, several methodologies for the study of adaptability and stability of genotypes in multiple environments trials were developed in order to assist the breeder's choice regarding which genotypes are more stable and which are the most suitable for the crops in the most diverse environments. The methods that use linear regression analysis were the first to be used in a general way by breeders, followed by multivariate analysis methods and mixed models. The need to identify the genetic and environmental causes that are behind the GxE interaction led to the development of new models that include the use of covariates and which can also include both multivariate methods and mixed modeling. However, further studies are needed to identify the causes of GxE interaction as well as for the more accurate measurement of its effects on phenotypic expression of varieties in competition trials carried out in genetic breeding programs.
Resumo:
INTRODUCTION: Authors describe human schistosomal granuloma in late chronic phase, from the morphological and evolutionary viewpoints. METHODS: The study was based on a histological analysis of two fragments obtained from a surgical biopsy of peritoneum and large intestine of a 42-year-old patient, with a pseudotumoral form mimicking a peritoneal carcinomatosis associated to the schistosomiasis hepatointestinal form. RESULTS: Two hundred and three granulomas were identified in the pseudotumor and 27 in the intestinal biopsy, with similar morphological features, most in the late chronic phase, in fibrotic healing. A new structural classification was suggested for granulomas: zone 1 (internal), 2 (intermediate) and 3 (external). CONCLUSIONS: Regarding granuloma as a whole, we may conclude that fibrosis is likely to be controlled by different and independent mechanisms in the three zones of the granuloma. Lamellar fibrosis in zone 3 seems to be controlled by matrix mesenchymal cells (fibroblasts and myoepithelial cells) and by inflammatory exudate cells (lymphocytes, plasmocytes, neutrophils, eosinophils). Annular fibrosis in zone 2, comprising a dense fibrous connective tissue, with few cells in the advanced phase, would be controlled by epithelioid cells involving zone 1 in recent granulomas. In zone 1, replacing periovular necrosis, an initialy loose and tracery connective neoformation, housing stellate cells or with fusiform nuclei, a dense paucicellular nodular connctive tissue emerges, probably induced by fibroblasts. In several granulomas, one of the zones is missing and granuloma is represented by two of them: Z3 and Z2, Z3 and Z1 or Z2 and Z1 and, ultimately, by a scar.
Resumo:
The evolution of receiver architectures, built in modern CMOS technologies, allows the design of high efficient receivers. A key block in modern receivers is the oscillator. The main objective of this thesis is to design a very low power and low area 8-Phase Ring Oscillator for biomedical applications (ISM and WMTS bands). Oscillators with multiphase outputs and variable duty cycles are required. In this thesis we are focused in 12.5% and 50% duty-cycles approaches. The proposed circuit uses eight inverters in a ring structure, in order to generate the output duty cycle of 50%. The duty cycle of 1/8 is achieved through the combination of the longer duty cycle signals in pairs, using, for this purpose, NAND gates. Since the general application are not only the wireless communications context, as well as industrial, scientific and medical plans, the 8-Phase Oscillator is simulated to be wideband between 100 MHz and 1 GHz, and be able to operate in the ISM bands (447 MHz-930 MHz) and WMTS (600 MHz). The circuit prototype is designed in UMC 130 nm CMOS technology. The maximum value of current drawn from a DC power source of 1.2 V, at a maximum frequency of 930 MHz achieved, is 17.54 mA. After completion of the oscillator layout studied (occupied area is 165 μm x 83 μm). Measurement results confirm the expected operating range from the simulations, and therefore, that the oscillator fulfil effectively the goals initially proposed in order to be used as Local Oscillator in RF Modern Receivers.
Resumo:
Introduction Parenteral antimony-based compounds are still the standard of care for cutaneous leishmaniasis (CL) treatment in many countries, despite their high toxicity. Previous studies showed that oral azithromycin could be an option for CL treatment. The aim of this study was to evaluate efficacy and safety of oral azithromycin (AZ) for CL treatment compared with injectable meglumine antimoniate (MA). Methods This was a randomized, open-label, 2-arm, non-inferiority clinical trial. Treatment-naïve patients with localized CL were treated with MA (15mg/kg/day up to 1,215mg) or AZ (500mg/day) during 20 consecutive days. The primary efficacy end point was a CL cure 90 days after treatment completion. The analysis was performed with intention-to-treat (ITT) and per protocol (PP) analyses. After an anticipated interim analysis, the study was interrupted due to the high failure rate in the azithromycin group. Results Twenty-four volunteers were included in each group. The MA group had a higher cure rate than the AZ group with the ITT and PP analyses, which were 54.2% versus 20.8% [relative risk (RR) 1.97; 95% confidence intervals (95%CI) 1.13-3.42] and 72.2% versus 23.8% (RR 3.03; 95%CI 1.34-6.87), respectively. No unexpected adverse events were observed. Conclusions Azithromycin is ineffective for CL treatment and does not seem to have a role in the therapeutic arsenal for CL.
Resumo:
ABSTRACTA woman had been followed since 1957 for acute phase Chagas disease. Parasitological and serological tests were positive, and treatment included benznidazole in 1974. Following treatment, parasitological test results were negative and conventional serology remained positive until 1994, with subsequent discordant results (1995-1997). The results became consistently negative since 1999. She had an indeterminate chronic form until 1974. Only two minor and transitory nonspecific alterations on electrocardiogram were noted, with the last nine records normal until June 2014. This case confirms the possibility of curing chronic disease and suggests the benefit of specific treatments for preventing long-term morbidity.
Resumo:
Quadrature oscillators are key elements in modern radio frequency (RF) transceivers and very useful nowadays in wireless communications, since they can provide: low quadrature error, low phase-noise, and wide tuning range (useful to cover several bands). RC oscillators can be fully integrated without the need of external components (external high Q-inductors), optimizing area, cost, and power consumption. The conventional structure of ring oscillator offers poor frequency stability and phasenoise, low quality factor (Q), and besides being vulnerable to process, voltage and temperature (PVT) variations, its performance degrades as the frequency of operation increases. This thesis is devoted to quadrature oscillators and presents a detailed comparative study of ring oscillator and shift register (SR) approaches. It is shown that in SRs both phase-noise and phase error are reduced, while ring oscillators have the advantage of occupying less area and less consumption due to the reduced number of components in the circuit. Thus, although ring oscillators are more suitable for biomedical applications, SRs are more appropriate for wireless applications, especially when specification requirements are more stringent and demanding. The first architecture studied consists in a simple CMOS ring oscillator employing an odd number of static single-ended inverters as delay cells. Subsequently, the quadrature 4-stage ring oscillator concept is shown and post-layout simulations are presented. The 3 and 4-phase single-frequency local oscillator (LO) generators employing SRs are presented, the latter with 50% and 25% duty-cycles. The circuits operate at 600 MHz and 900 MHz, and were designed in a 130 nm standard CMOS technology with a voltage supply of 1.2 V.
Resumo:
This paper presents a comprehensive comparison of a current-source converter and a voltage-source converter for three-phase electric vehicle (EV) fast battery chargers. Taking into account that the current-source converter (CSC) is a natural buck-type converter, the output voltage can assume a wide range of values, which varies between zero and the maximum instantaneous value of the power grid phase-to-phase voltage. On the other hand, taking into account that the voltage-source converter (VSC) is a natural boost-type converter, the output voltage is always greater than the maximum instantaneous value of the power grid phase-to-phase voltage, and consequently, it is necessary to use a dc-dc buck-type converter for applications as EV fast battery chargers. Along the paper is described in detail the principle of operation of both the CSC and the VSC for EV fast chargers, as well as the main equations of the power theory and current control strategies. The comparison between both converters is mainly established in terms of the total harmonic distortion of the grid current and the estimated efficiency for a range of operation between 10 kW and 50 kW.
Resumo:
This paper presents a three-phase three-level fast battery charger for electric vehicles (EVs) based in a current-source converter (CSC). Compared with the traditional voltage-source converters used for fast battery chargers, the CSC can be seen as a natural buck-type converter, i.e., the output voltage can assume a wide range of values, which varies between zero and the maximum instantaneous value of the power grid phase-to-phase voltage. Moreover, using the CSC it is not necessary to use a dc-dc back-end converter in the battery side, and it is also possible to control the grid current in order to obtain a sinusoidal waveform, and in phase with the power grid voltage (unitary power factor). Along the paper is described in detail the proposed CSC for EVs fast battery charging systems: the circuit topology, the power control theory, the current control strategy and the grid synchronization algorithm. Several simulation results of the EV fast battery charger operating with a maximum power of 50 kW are presented.
Resumo:
This paper presents the proposal of a three phase current source shunt active power filter (CS-SAPF) with photovoltaic grid interface. The proposed system combines the compensation of reactive power and harmonics with the injection of energy from a solar photovoltaic array into the electrical power grid. The proposed equipment presents the advantage of giving good use to the current source inverter, even when the solar photovoltaic array is not producing energy. The paper describes the control system of the CS SAPF, the energy injection control strategy, and the current harmonics and power factor compensation strategy. Simulation results to assess the performance of the proposed system are also presented.
Resumo:
The construction industry is responsible for high energy and raw materials consumption. Thus, it is important to minimize the high energy consumption by taking advantage of renewable energy sources and reusing industrial waste, decreasing the extraction of natural materials. The mortars with incorporation of phase change materials (PCM) have the ability to regulate the temperature inside buildings, contributing to the thermal comfort and reduction of the use of heating and cooling equipment, using only the energy supplied by the sun. The simultaneous incorporation of PCM and fly ash (FA) can reduce the energy consumption and the amount of materials landfilled. However, the addition of these materials in mortars modifies its characteristics. The main purpose of this study was the production and characterization in the fresh and hardened state of mortars with incorporation of different contents of PCM and FA. The binders studied were aerial lime, hydraulic lime, gypsum and cement. The proportion of PCM studied was 0%, 20%, 40% and 60% of the mass of the sand. The content of fly ash added to the mortars was 0%, 20%, 40% and 60% of the mass of the binder. It was possible to observe that the incorporation of PCM and fly ash in mortars caused differences in properties such as workability, microstructure, water absorption, compressive strength, flexural strength and adhesion.
Resumo:
This paper assesses the feasibility of impregnation/encasement of phase change materials (PCMs) in lightweight aggregates (LWAs). An impregnation process was adopted to carry out the encasement study of two different PCMs in four different LWAs. The leakage of the impregnated/encased PCMs was studied when they were submitted to freeze/thawing and oven drying tests, separately. The results confirmed that, the impregnation/encasement method is effective with respect to the large thermal energy storage density, and can be suitable for applications were PCMs cannot be incorporated directly such as asphalt road pavements.
Resumo:
The Gibbs free energy of transfer of a methylene group, G*(CH2), is reported as a measure of the relative hydrophobicity of the equilibrium phases. Furthermore, G*(CH2) is a characteristic parameter of each tie-line, and for that reason can be used for comparing different tie-lines of a given aqueous two-phase system (ATPS) or even to establish comparisons among different ATPSs. In this work, the partition coefficients of a series of four dinitrophenylated-amino acids were experimentally determined, at 23 °C, in five different tie-lines of PEG8000(sodium or potassium) citrate ATPSs. G*(CH2) values were calculated from the partition coefficients and used to evaluate the relative hydrophobicity of the equilibrium phases. PEG8000potassium citrate ATPSs presented larger relative hydrophobicity than PEG8000sodium citrate ATPSs. Furthermore, the results obtained indicated that the PEG-rich phase (top phase) has higher affinity to participate in hydrophobic hydration interactions than the salt-rich phase (bottom phase).