998 resultados para Petróleo - Segurança de dutos
Resumo:
This work presents a proposal to detect interface in atmospheric oil tanks by installing a differential pressure level transmitter to infer the oil-water interface. The main goal of this project is to maximize the quantity of free water that is delivered to the drainage line by controlling the interface. A Fuzzy Controller has been implemented by using the interface transmitter as the Process Variable. Two ladder routine was generated to perform the control. One routine was developed to calculate the error and error variation. The other was generate to develop the fuzzy controller itself. By using rules, the fuzzy controller uses these variables to set the output. The output is the position variation of the drainage valve. Although the ladder routine was implemented into an Allen Bradley PLC, Control Logix family it can be implemented into any brand of PLCs
Resumo:
Continuous steam injection is one of heavy oil thermal recovery methods used in the Brazilian Northeast because of high occurrence of heavy oil reservoir. In this process, the oil into the reservoir is heated while reduces, substantially, its viscosity and improves the production. This work analyzed how the shaly sand layers influenced in the recovery. The studied models were synthetics, but the used reservoir data can be extrapolated to real situations of Potiguar Basin. The modeling was executed using the STARS - Steam Thermal and Advanced Process Reservoir Simulator - whose version was 2007.10. STARS is a tool of CMG Computer Modeling Group. The study was conducted in two stages, the first we analyzed the influence of reservoir parameters in the thermal process, so some of these were studied, including: horizontal permeability of the reservoir and the layer of shaly sand, ratio of horizontal permeability to vertical permeability, the influence of capillary pressure layer of shaly sand and as the location and dimensions of this heterogeneity can affect the productivity of oil. Among the parameters studied the horizontal permeability of the reservoir showed the most significant influence on the process followed by diversity. In the second stage three models were selected and studied some operational parameters such as injection rate, distance between wells, production time and completion intervals. Among the operating parameters studied the low rate and intermediate distances between wells showed the best recoveries
Resumo:
The use of infrared burners in industrial applications has many advantages in terms of technical-operational, for example, uniformity in the heat supply in the form of radiation and convection, with greater control of emissions due to the passage of exhaust gases through a macro-porous ceramic bed. This paper presents an infrared burner commercial, which was adapted an experimental ejector, capable of promoting a mixture of liquefied petroleum gas (LPG) and glycerin. By varying the percentage of dual-fuel, it was evaluated the performance of the infrared burner by performing an energy balance and atmospheric emissions. It was introduced a temperature controller with thermocouple modulating two-stage (low heat / high heat), using solenoid valves for each fuel. The infrared burner has been tested and tests by varying the amount of glycerin inserted by a gravity feed system. The method of thermodynamic analysis to estimate the load was used an aluminum plate located at the exit of combustion gases and the distribution of temperatures measured by a data acquisition system which recorded real-time measurements of the thermocouples attached. The burner had a stable combustion at levels of 15, 20 and 25% of adding glycerin in mass ratio of LPG gas, increasing the supply of heat to the plate. According to data obtained showed that there was an improvement in the efficiency of the 1st Law of infrared burner with increasing addition of glycerin. The emission levels of greenhouse gases produced by combustion (CO, NOx, SO2 and HC) met the environmental limits set by resolution No. 382/2006 of CONAMA
Resumo:
With the high oil price variability, the petroleum and the reservoir engineers are usually face to face on how they can evaluate the well performance and productivity. They can improve high productivity from the well construction to the secondary recoveries, but they have never tried a measurement in the drilling operations about the lower productivity index. As a rule, frequently the drilling operations hear from the reservoir engineering and geology that, if there is a formation damage, probably some drilling operations practices were not done properly or the good practice in petroleum engineering or mud engineering were not observed. The study in this working search is an attempt of how to measure a formation damage just from the project drilling to the drilling operations, with datum from the fields in Brazilian northeast and putting into practice a Simulator developed from the modeling on the theory offered by different experts and sources in formation damage
Resumo:
The primary cementing is an important step in the oilwell drilling process, ensuring the mechanical stability of the well and the hydraulic isolation between casing and formation. For slurries to meet the requirements for application in a certain well, some care in the project should be taken into account to obtain a cement paste with the proper composition. In most cases, it is necessary to add chemicals to the cement to modify its properties, according to the operation conditions and thus obtain slurries that can move inside the jacket providing a good displacement to the interest area. New technologies of preparation and use of chemicals and modernization of technological standards in the construction industry have resulted in the development of new chemical additives for optimizing the properties of building materials. Products such as polycarboxylate superplasticizers provide improved fluidity and cohesion of the cement grains, in addition to improving the dispersion with respect to slurries without additives. This study aimed at adapting chemical additives used in civil construction to be used use in oilwell cement slurries systems, using Portland cement CPP-Special Class as the hydraulic binder. The chemical additives classified as defoamer, dispersant, fluid loss controller and retarder were characterized by infrared absorption spectroscopy, thermogravimetric analyses and technological tests set by the API (American Petroleum Institute). These additives showed satisfactory results for its application in cement slurries systems for oil wells. The silicone-based defoamer promoted the reduction of air bubbles incorporated during the stirring of the slurries. The dispersant significantly reduced the rheological parameters of the systems studied. The tests performed with the fluid loss controller and the retarder also resulted in suitable properties for application as chemical additives in cement slurries
Resumo:
Steam injection is the most used thermal recovery method of oil nowadays because of the high degree of development of the technique that allows high recovery factors. However, injection of superheated steam into the reservoir affects the entire structure of the well, including the cemented layer that presents a retrogression of compressive strength and increases the permeability due to formation of more crystalline and denser phases at temperatures above 110 °C. These changes result in failures in the cement that favor the entrance of formation fluids into the annulus space resulting in unsafe operations and restrictions in the economic life of the well. But the strength retrogression can be prevented by partial replacement of cement by silica-based materials that reduce the CaO/SiO2 ratio of cement slurries changing the trajectory of the reactions, converting those deleterious phases in phases with satisfactory mechanical strength and permeability. The aim of this study was to evaluate the behavior of a ceramic waste material rich in silica in partial and total substitution of a mineral additive used to fight the strength retrogression of cement slurries subjected to high temperatures. The evaluation was made by compression, X-ray diffraction (XRD) and thermogravimetry (TG/DTG). The samples were submitted to a cycle of low temperature (38 °C) for 28 days and a cycle of low temperature followed by exposure to 280 ºC and 1000 psi by 3 days. The results showed that slurries with additions of up to 30% of the waste material are not enough to prevent the strength retrogression, while slurries with additions of the waste material combined with silica flour in various proportions produced hydrated products of low Ca/Si ratios that maintained the compressive strength at satisfactory levels
Resumo:
Os poços HPHT atravessam zonas anormalmente pressurizadas e com altos gradientes de temperatura. Esses poços apresentam elevadas concentrações de tensões produzidas pelas operações de perfuração e fraturamento hidráulico, flutuações da pressão e temperatura, forças dinâmicas geradas durante a perfuração, formações inconsolidadas, entre outros aspectos, podendo resultar em falhas mecânicas na bainha de cimento. Tais falhas comprometem a estabilidade mecânica do poço e o isolamento das zonas produtoras de óleos e/ou gás. Para que operações corretivas não se façam necessárias, é preciso adequar as pastas às condições de cada poço. Sistemas de pastas de cimento para poços HPHT requerem um bom controle de suas propriedades termo-mecânicas. Visto que a temperaturas superiores a 110 oC (230 oF) o cimento, após alcançar um valor máximo de resistência, inicia um processo de perda de resistência (retrogressão). Para prevenir esse efeito substitui-se parcialmente o cimento Portland por sílica com objetivo de incrementar a reação pozolânica. Esta reação modifica a trajetória do processo natural de hidratação do cimento, o gel de silicato de cálcio hidratado (C-S-H) se converte em várias outras fases com maior resistência. Polímeros também são adicionados para proporcionar maior flexibilidade e agir como barreira à propagação de trincas desenvolvidas sob tensão. O presente trabalho teve como objetivo estudar o comportamento do sistema cimento/sílica/polímero quando submetido às condições de alta temperatura e alta pressão. Foram formuladas pastas de cimento puro, pastas contendo 40 % BWOC de sílica flour e pastas com diferentes concentrações de poliuretana (5 % a 25 %) e 40 % BWOC de sílica flour. O peso específico das pastas foi fixado em 1,87 g/cm3 (15,6 lb/gal). Os resultados demonstram que as resistências da pasta contendo 40% de sílica e das com adição de polímero foram muito superiores a da pasta de cimento puro, não ocorrendo o efeito da retrogressão. As pastas com polímero apresentaram um crescente aumento da tenacidade com o aumento da concentração da mesma, sendo assim capaz de suportar as tensões. Além de se manterem estáveis termicamente acima de 180 ºC. O sistema também apresentou excelentes resultados de filtrado, reologia, água livre, estabilidade e permeabilidade. Sendo assim, o mesmo mostrou ser aplicável a poços HPHT
Resumo:
In the last decades, the oil, gas and petrochemical industries have registered a series of huge accidents. Influenced by this context, companies have felt the necessity of engaging themselves in processes to protect the external environment, which can be understood as an ecological concern. In the particular case of the nuclear industry, sustainable education and training, which depend too much on the quality and applicability of the knowledge base, have been considered key points on the safely application of this energy source. As a consequence, this research was motivated by the use of the ontology concept as a tool to improve the knowledge management in a refinery, through the representation of a fuel gas sweetening plant, mixing many pieces of information associated with its normal operation mode. In terms of methodology, this research can be classified as an applied and descriptive research, where many pieces of information were analysed, classified and interpreted to create the ontology of a real plant. The DEA plant modeling was performed according to its process flow diagram, piping and instrumentation diagrams, descriptive documents of its normal operation mode, and the list of all the alarms associated to the instruments, which were complemented by a non-structured interview with a specialist in that plant operation. The ontology was verified by comparing its descriptive diagrams with the original plant documents and discussing with other members of the researchers group. All the concepts applied in this research can be expanded to represent other plants in the same refinery or even in other kind of industry. An ontology can be considered a knowledge base that, because of its formal representation nature, can be applied as one of the elements to develop tools to navigate through the plant, simulate its behavior, diagnose faults, among other possibilities
Resumo:
The scale is defined as chemical compounds from inorganic nature, initially soluble in salt solutions, which may precipitate accumulate in columns of production and surface equipment. This work aimd to quantify the crystalline phases of scale through the Rietveld method. The study was conducted in scale derived from columns production wells in development and recipients of pigs. After collecting samples of scale were performed the procedure for separations of inorganic and organic phase and preparation to be analyzed at the X-ray Laboratory. The XRD and XRF techniques were used to monitor whether identifying and quantifying crystalline phases present in the deposits. The SEM technique was used to visualize the morphology of the scales and assess their homogeneity after the milling process. XRD measurements were performed with and without milling and with or without the accessory spinner. For quantify crystalline phases the program DBWStools was used. The procedure for conducting the first refinement was instrumental in setting parameters, then the structural parameters of the phases in the sample and finally the parameters of the function profile used. In the diffraction patterns of samples of scale observed that the best measures were those that passed through the mill and used the accessory spinner. Through the results, it was noted that the quantitative analysis for samples of scale is feasible when need to monitor a particular crystalline phase in a well, pipeline or oil field. Routinely, the quantification of phases by the Rietveld method is hardwork because in many scale was very difficult to identify the crystalline phases present
Resumo:
The oil activity in the Rio Grande do Norte State (RN) is a permanent threat to coastal ecosystems, particularly mangroves, with the possibility of oil spills. In this context, the objective of this study was to evaluate the potential resistance of the mangrove environment of a possible spill. Were selected and isolated microorganisms degrading oil by the technique of enrichment cultures and formation of a bacterial consortium. The kinetic study of the consortium was held in rotary incubator shaken at 150 rpm and 30° C. Samples were taken at intervals of 4 hours for analysis of cell concentration and surface tension. The biodegradation was monitored using two methods of respirometry: manometric (OxiTop-C ®) and conductivimetry, where the biodegradation of oil was estimated indirectly by oxygen consumption and CO2 production, respectively. Furthermore, it was used a full 2² factorial design with triplicate at central point to the runs that used the conductivimetric methodology.. The technique of enrichment cultures allowed to obtain thirteen bacterial strains. Kinetic study of the consortium, we can showed the absence of the lag phase, reaching a maximum cell concentration of 2.55 g / L at 16 h of cultivation and a reduction on surface tension. When we adopted the methodology of OxiTop-C was detected a band indicating biodegradability (1% oil v/v), however when we used the conductivimetry methodology did not observe any band that would indicate effective biodegradation. By monitoring a process of biodegradation is necessary to observe the methodology will be adopted to evaluate the biodegradation process, since for the same conditions adopted different methodologies can produce different results. The oil-degrading isolates from soils of the mangrove estuary Potengi / RN are largely to be used in bioremediation strategies of these places, in the case of a possible oil spill, or it can be used in the treatment of waste oil generated in saline environments, since they are optimized the conditions of the tests so that the efficiency of biodegradation reach the minimum level suggested by the standarts
Resumo:
The general objective of this study was to contribute to the understanding of the chemical evolution of fluids that percolate through carbonate rocks of the Jandaíra Formation. The oxidation and reduction conditions in which grains, source and cement were formed was investigated using the cathodoluminescence technique (CL). The study area is located in the west part of the Potiguar Basin (Fazenda Belém field) and Rosário Ledge (Felipe Guerra municipality, State of Rio Grande do Norte, Brazil). The analysis of thin sections of carbonate rocks under CL revealed that grains (allochemical or not) and diagenetic products (micritization, dolomitization, neomorphism and cementation) exhibit since absence of luminescence the various luminescence colors (yellow, orange, red, brown, and blue) in a variety of intensities. As pure calcite shows dark blue luminescence, the occurrence of different luminescence colors in calcite crystals suggest one or more punctual crystal defects such as free electron, free space and impurity. The dyeing of thin sections with alizarin and potassium ferrocyanide revealed the absence of ferrous carbonate in the different lithotypes of Jandaíra Formation. Therefore, the different colors and intensities of CL observed in these rocks are probably caused by the presence of ion activators such as Mn2+ and is not an activator/inhibitor combination. In the same way, the absence of luminescence is very probably caused by the absence of activator ions and not due to the low concentration of inhibitor ions such as Fe2+. The incorporation of Mn2+ in the different members of the Jandaíra Formation must have been controlled by the redox state of the depositional environment and diagenesis. Therefore, it is possible that the luminescent members have been formed (e.g.,ooids) or have been modified (gastropod neomorphism) under reduction conditions in the depositional environments, in subsurface during the burial, or, in the case of Rosario Ledge samples , during the post-burial return to surface conditions. As regards the sudden changes from low to moderate and to strong luminescence, these features should indicate the precipitation of a fluid with chemical fluctuations, which formed the frequent zonations in the block cement of the Rosario Ledge samples. This study suggests that the different intensities and colors of CL should be correlated with the Mn2+ and Fe2+ contents, and stable isotopes of samples to determine the salinity, temperature, pH e Eh conditions during deposition
Resumo:
Efforts in research and development of new technologies to reduce emission levels of pollutant gases in the atmosphere has intensified in the last decades. In this context, it can be highlighted the modern systems of electronic engine management, new automotive catalysts and the use of renewable fuels which contributes to reduce the environmental impact. The purpose of this study was a comparative analysis of gas emissions from a automotive vehicle, operating with different fuels: natural gas, AEHC or gasoline. To execute the experimental tests, a flex vehicle was installed on a chassis dynamometer equipped with a gas analyzer and other complementary accessories according to the standard guidelines of emission and security procedures. Tests were performed according to NBR 6601 and NBR 7024, which define the urban and road driving cycle, respectively. Besides the analysis of exhaust gases in the discharge tube, before and after the catalyst, using the suction probe of the gas analyzer to simulate the vehicle in urban and road traffic, were performed tests of fuel characterization. Final results were conclusive in indicating leaded gasoline as the fuel which most contributed with pollutant emissions in atmosphere and the usual gasoline being the fuel which less contributed with pollutant emissions in atmosphere
Resumo:
In the operational context of industrial processes, alarm, by definition, is a warning to the operator that an action with limited time to run is required, while the event is a change of state information, which does not require action by the operator, therefore should not be advertised, and only stored for analysis of maintenance, incidents and used for signaling / monitoring (EEMUA, 2007). However, alarms and events are often confused and improperly configured similarly by developers of automation systems. This practice results in a high amount of pseudo-alarms during the operation of industrial processes. The high number of alarms is a major obstacle to improving operational efficiency, making it difficult to identify problems and increasing the time to respond to abnormalities. The main consequences of this scenario are the increased risk to personal safety, facilities, environment deterioration and loss of production. The aim of this paper is to present a philosophy for setting up a system of supervision and control, developed with the aim of reducing the amount of pseudo-alarms and increase reliability of the information that the system provides. A real case study was conducted in the automation system of the offshore production of hydrocarbons from Petrobras in Rio Grande do Norte, in order to validate the application of this new methodology. The work followed the premises of the tool presented in ISA SP18.2. 2009, called "life cycle alarm . After the implementation of methodology there was a significant reduction in the number of alarms
Resumo:
The Wireless Sensor Networks (WSN) methods applied to the lifting of oil present as an area with growing demand technical and scientific in view of the optimizations that can be carried forward with existing processes. This dissertation has as main objective to present the development of embedded systems dedicated to a wireless sensor network based on IEEE 802.15.4, which applies the ZigBee protocol, between sensors, actuators and the PLC (Programmable Logic Controller), aiming to solve the present problems in the deployment and maintenance of the physical communication of current elevation oil units based on the method Plunger-Lift. Embedded systems developed for this application will be responsible for acquiring information from sensors and control actuators of the devices present at the well, and also, using the Modbus protocol to make this network becomes transparent to the PLC responsible for controlling the production and delivery information for supervisory SISAL
Resumo:
Waste generated during the exploration and production of oil, water stands out due to various factors including the volume generated, the salt content, the presence of oil and chemicals and the water associated with oil is called produced water. The chemical composition of water is complex and depends strongly on the field generator, because it was in contact with the geological formation for thousands of years. This work aims to characterize the hydrochemical water produced in different areas of a field located in the Potiguar Basin. We collected 27 samples from 06 zones (400, 600, 400/600, 400/450/500, 350/400, A) the producing field called S and measured 50 required parameter divided between physical and chemical parameters, cations and anions. In hydrochemical characterization was used as tools of reasons ionic calculations, diagrams and they hydrochemical classification diagram Piper and Stiff diagram and also the statistic that helped in the identification of signature patterns for each production area including the area that supplies water injected this field for secondary oil recovery. The ionic balance error was calculated to assess the quality of the results of the analysis that was considered good, because 89% of the samples were below 5% error. Hydrochemical diagrams classified the waters as sodium chloride, with the exception of samples from Area A, from the injection well, which were classified as sodium bicarbonate. Through descriptive analysis and discriminant analysis was possible to obtain a function that differs chemically production areas, this function had a good hit rate of classification was 85%