952 resultados para Periodic nanostructures
Resumo:
"August 1982"--P. [4] of cover.
Resumo:
Transportation Department, Office of the Assistant Secretary for Policy and International Affairs, Washington, D.C.
Resumo:
Includes bibliographies.
Resumo:
Title from caption.
Resumo:
Title from cover.
Resumo:
"Reprint which includes current pages from changes 1 through 3."
Resumo:
"12 April 1988."
Resumo:
Mode of access: Internet.
Resumo:
This work reports the first instance of self-organized thermoset blends containing diblock copolymers with a crystallizable thermoset-immiscible block. Nanostructured thermoset blends of bisphenol A-type epoxy resin (ER) and a low-molecular-weight (M-n = 1400) amphiphilic polyethylene-block-poly(ethylene oxide) (EEO) symmetric diblock copolymer were prepared using 4,4'-methylenedianiline (MDA) as curing agent and were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). All the MDA-cured ER/EEO blends do not show macroscopic phase separation but exhibit microstructures. The ER selectively mixes with the epoxy-miscible PEO block in the EEO diblock copolymer whereas the crystallizable PE blocks that are immiscible with ER form separate microdomains at nanoscales in the blends. The PE crystals with size on nanoscales are formed and restricted within the individual spherical micelles in the nanostructured ER/EEO blends with EEO content up to 30 wt %. The spherical micelles are highly aggregated in the blends containing 40 and 50 wt % EEO. The PE dentritic crystallites exist in the blend containing 50 wt % EEO whereas the blends with even higher EEO content are completely volume-filled with PE spherulites. The semicrystalline microphase-separated lamellae in the symmetric EEO diblock copolymer are swollen in the blend with decreasing EEO content, followed by a structural transition to aggregated spherical micellar phase morphology and, eventually, spherical micellar phase morphology at the lowest EEO contents. Three morphological regimes are identified, corresponding precisely to the three regimes of crystallization kinetics of the PE blocks. The nanoscale confinement effect on the crystallization kinetics in nanostructured thermoset blends is revealed for the first time. This new phenomenon is explained on the basis of homogeneous nucleation controlled crystallization within nanoscale confined environments in the block copolymer/thermoset blends.
Resumo:
In recent years, acoustic perturbation measurement has gained clinical and research popularity due to the ease of availability of commercial acoustic analysing software packages in the market. However, because the measurement itself depends critically on the accuracy of frequency tracking from the voice signal, researchers argue that perturbation measures are not suitable for analysing dysphonic voice samples, which are aperiodic in nature. This study compares the fundamental frequency, relative amplitude perturbation, shimmer percent and noise-to-harmonic ratio between a group of dysphonic and non-dysphonic subjects. One hundred and twelve dysphonic subjects ( 93 females and 19 males) and 41 non-dysphonic subjects ( 35 females and 6 males) participated in the study. All the 153 voice samples were categorized into type I ( periodic or nearly periodic), type II ( signals with subharmonic frequencies that approach the fundamental frequency) and type III ( aperiodic) signals. Only the type I ( periodic and nearly periodic) voice signals were acoustically analysed for perturbation measures. Results revealed that the dysphonic female group presented significantly lower fundamental frequency, significantly higher relative amplitude perturbation and shimmer percent values than the non-dysphonic female group. However, none of these three perturbation measures were able to differentiate between male dysphonic and male non-dysphonic subjects. The noise-to-harmonic ratio failed to differentiate between the dysphonic and non-dysphonic voices for both gender groups. These results question the sensitivity of acoustic perturbation measures in detecting dysphonia and suggest that contemporary acoustic perturbation measures are not suitable for analysing dysphonic voice signals, which are even nearly periodic. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
All signals that appear to be periodic have some sort of variability from period to period regardless of how stable they appear to be in a data plot. A true sinusoidal time series is a deterministic function of time that never changes and thus has zero bandwidth around the sinusoid's frequency. A zero bandwidth is impossible in nature since all signals have some intrinsic variability over time. Deterministic sinusoids are used to model cycles as a mathematical convenience. Hinich [IEEE J. Oceanic Eng. 25 (2) (2000) 256-261] introduced a parametric statistical model, called the randomly modulated periodicity (RMP) that allows one to capture the intrinsic variability of a cycle. As with a deterministic periodic signal the RMP can have a number of harmonics. The likelihood ratio test for this model when the amplitudes and phases are known is given in [M.J. Hinich, Signal Processing 83 (2003) 1349-13521. A method for detecting a RMP whose amplitudes and phases are unknown random process plus a stationary noise process is addressed in this paper. The only assumption on the additive noise is that it has finite dependence and finite moments. Using simulations based on a simple RMP model we show a case where the new method can detect the signal when the signal is not detectable in a standard waterfall spectrograrn display. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A systematic study on the structural properties and external morphologies of large-pore mesoporous organosilicas synthesized using triblock copolymer EO20PO70EO20 as a template under low-acid conditions was carried out. By employing the characterization techniques of SAXS, FE-SEM, and physical adsorption of N-2 in combination with alpha(s)-plot method, the structural properties and external morphologies of large-pore mesoporous organosilicas were critically examined and compared with that of their pure-silica counterparts synthesized under similar conditions. It has been observed that unlike mesoporous pure silicas, the structural and morphological properties of mesoporous organosilicas are highly acid-sensitive. High-quality mesoporous organosilicas can only be obtained from synthesis gels with the molar ratios of HCl/H2O between 7.08 x 10(-4) and 6.33 x 10(-3), whereas mesoporous pure silicas with well-ordered structure can be obtained in a wider range of acid concentration. Simply by adjusting the HCl/H2O molar ratios, the micro-, meso-, and macroporosities of the organosilica materials can be finely tuned without obvious effect on their structural order. Such a behavior is closely related to their acid-controlled morphological evolution: from necklacelike fibers to cobweb-supported pearl-like particles and to nanosized particulates.
Resumo:
Theoretical developments as well as field and laboratory data have shown the influence of the capillary fringe on water table fluctuations to increase with the fluctuation frequency. The numerical solution of a full, partially saturated flow equation can be computationally expensive. In this paper, the influence of the capillary fringe on water table fluctuations is simplified through its parameterisation into the storage coefficient of a fully-saturated groundwater flow model using the complex effective porosity concept [Nielsen, P., Perrochet, P., 2000. Water table dynamics under capillary fringes: experiments and modelling. Advances in Water Resources 23 (1), 503-515; Nielsen, P., Perrochet, P., 2000. ERRATA: water table dynamics under capillary fringes: experiments and modelling (Advances in Water Resources 23 (2000) 503-515). Advances in Water Resources 23, 907-908]. The model is applied to sand flume observations of periodic water table fluctuations induced by simple harmonic forcing across a sloping boundary, analogous to many beach groundwater systems. While not providing information on the moisture distribution within the aquifer, this approach can reasonably predict the water table fluctuations in response to periodic forcing across a sloping boundary. Furthermore, he coupled ground-surface water model accurately predicts the extent of the seepage face formed at the sloping boundary. (C) 2005 Elsevier Ltd. All rights reserved.