870 resultados para Peri-implantitis and Treatment
Resumo:
Common root rot (CRR) and spot blotch, caused by Cochliobolus sativus (Ito and Kurib.) Drechsl. ex Dast., are important diseases of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) worldwide. However, the population biology of C. sativus is still poorly understood. In this study, the genetic structure of three C. sativus populations, consisting of isolates sampled respectively from barley leaves (BL), barley roots (BR) and wheat roots (WR) in North Dakota, was analysed with amplified fragment length polymorphism (AFLP) markers. A total of 127 AFLP loci were generated among 208 C. sativus isolates analysed with three primer combinations. Gene diversity (H = 0.277-0.335) were high in all three populations. Genetic variation among C. sativus individuals within population accounted for 74%, whereas 26% of the genetic variation was explained among populations. Genetic differentiation was high (empty set PT = 0.261, corrected G ''(st)= 0.39), whereas gene flow (Nm) ranged from 1.27 to 1.56 among the three populations analysed. The multilocus linkage disequilibrium (LD) ((r) over bard = 0.0760.117) was moderate in C. sativus populations. Cluster analyses indicate that C. sativus populations differentiated according to the hosts (barley and wheat) and tissues (root and leaf) although generalists also exist in North Dakota. Crop breeding may benefit from combining genes for resistance against both specialists and generalists of C. sativus.
Resumo:
Fumigation of stored grain with phosphine (PH 3) is used widely to control the lesser grain borer Rhyzopertha dominica. However, development of high level resistance to phosphine in this species threatens control. Effective resistance management relies on knowledge of the expression of resistance in relation to dosage at all life stages. Therefore, we determined the mode of inheritance of phosphine resistance and strength of the resistance phenotype at each developmental stage. We achieved this by comparing mortality and developmental delay between a strongly resistant strain (R-strain), a susceptible strain (S-strain) and their F 1 progenies. Resistance was a maternally inherited, semi-dominant trait in the egg stage but was inherited as an autosomal, incompletely recessive trait in larvae and pupae. The rank order of developmental tolerance in both the sensitive and resistant strains was eggs > pupae > larvae. Comparison of published values for the response of adult R. dominica relative to our results from immature stages reveals that the adult stage of the S-strain is more sensitive to phosphine than are larvae. This situation is reversed in the R-strain as the adult stage is much more resistant to phosphine than even the most tolerant immature stage. Phosphine resistance factors at LC 50 were eggs 400×, larvae 87× and pupae 181× with respect to reference susceptible strain (S-strain) adults indicating that tolerance conferred by a particular immature stage neither strongly nor reliably interacts with the genetic resistance element. Developmental delay relative to unfumigated control insects was observed in 93% of resistant pupae, 86% of resistant larvae and 41% of resistant eggs. Increased delay in development and the toxicity response to phosphine exposure were both incompletely recessive. We show that resistance to phosphine has pleiotropic effects and that the expression of these effects varies with genotype and throughout the life history of the insect. © 2012.
Resumo:
Southern Hemisphere plantation forestry has grown substantially over the past few decades and will play an increasing role in fibre production and carbon sequestration in future. The sustainability of these plantations is, however, increasingly under pressure from introduced pests. This pressure requires an urgent and matching increase in the speed and efficiency at which tools are developed to monitor and control these pests. To consider the potential role of semiochemicals to address the need for more efficient pest control in Southern Hemisphere plantations, particularly by drawing from research in other parts of the world. Semiochemical research in forestry has grown exponentially over the last 40 years but has been almost exclusively focussed on Northern Hemisphere forests. In these forests, semiochemicals have played an important role to enhance the efficiency of integrated pest management programmes. An analysis of semiochemical research from 1970 to 2010 showed a rapid increase over time. It also indicated that pheromones have been the most extensively studied type of semiochemical in forestry, contributing to 92% of the semiochemical literature over this period, compared with research on plant kairomones. This research has led to numerous applications in detection of new invasions, monitoring population levels and spread, in addition to controlling pests by mass trapping or disrupting of aggregation and mating signals. The value of semiochemicals as an environmentally benign and efficient approach to managing forest plantation pests in the Southern Hemisphere seems obvious. There is, however, a lack of research capacity and focus to optimally capture this opportunity. Given the pressure from increasing numbers of pests and reduced opportunities to use pesticides, there is some urgency to develop semiochemical research capacity.
Resumo:
Fruit flies require protein for reproductive development and actively feed upon protein sources in the field. Liquid protein baits mixed with insecticide are used routinely to manage pest fruit flies, such as Bactrocera tryoni (Froggatt). However, there are still some gaps in the underpinning science required to improve the efficacy of bait spray technology. The spatial and temporal foraging behaviour of B. tryoni in response to protein was investigated in the field. A series of linked trials using either wild flies in the open field or laboratory-reared flies in field cages and a netted orchard were undertaken using nectarines and guavas. Key questions investigated were the fly's response to protein relative to: height of protein within the canopy, fruiting status of the tree, time of day, season and size of the experimental arena. Canopy height had a significant response on B. tryoni foraging, with more flies foraging on protein in the mid to upper canopy. Fruiting status also had a significant effect on foraging, with most flies responding to protein when applied to fruiting hosts. B. tryoni demonstrated a repeatable diurnal response pattern to protein, with the peak response being between 12:0016:00 h. Season showed significant but unpredictable effects on fruit fly response to protein in the subtropical environment where the work was undertaken. Relative humidity, but not temperature or rainfall, was positively correlated with protein response. The number of B. tryoni responding to protein decreased dramatically as the spatial scale increased from field cage through to the open field. Based on these results, it is recommend that, to be most effective, protein bait sprays should be applied to the mid to upper canopies of fruiting hosts. Overall, the results show that the protein used, an industry standard, has very low attractancy to B. tryoni and that further work is urgently needed to develop more volatile protein baits.
Resumo:
BACKGROUND: The recent development of very high resistance to phosphine in rusty grain beetle, Cryptolestes ferrugineus (Stephens), seriously threatens stored-grain biosecurity. The aim was to characterise this resistance, to develop a rapid bioassay for its diagnosis to support pest management and to document the distribution of resistance in Australia in 20072011. RESULTS: Bioassays of purified laboratory reference strains and field-collected samples revealed three phenotypes: susceptible, weakly resistant and strongly resistant. With resistance factors of > 1000 x , resistance to phosphine expressed by the strong resistance phenotype was higher than reported for any stored-product insect species. The new time-to-knockdown assay rapidly and accurately diagnosed each resistance phenotype within 6 h. Although less frequent in western Australia, weak resistance was detected throughout all grain production regions. Strong resistance occurred predominantly in central storages in eastern Australia. CONCLUSION: Resistance to phosphine in the rusty grain beetle is expressed through two identifiable phenotypes: weak and strong. Strong resistance requires urgent changes to current fumigation dosages. The development of a rapid assay for diagnosis of resistance enables the provision of same-day advice to expedite resistance management decisions. (c) 2012 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.
Resumo:
Rust (caused by Puccinia arachidis) and late leaf spot (LLS, caused by Mycosphaerella berkeleyi) can cause significant yield losses in Australian peanut crops. Until recently, all commercial peanut varieties were highly susceptible to these pathogens, but the new Australian cultivar Sutherland has significantly higher levels of resistance than the older cultivars. Field trials were conducted at two sites in Queensland to (a) confirm the improved resistance of cv. Sutherland over another commercial cultivar, Menzies, (b) study the effects of timing of first spray, spray interval and cultivar on disease severity and yield, and (c) develop a suitable fungicide management program for cv. Sutherland. In the 2006 and 2007 trials, rust and LLS developed slower and had lower final disease ratings and AUDPC values on unsprayed plots of cv. Sutherland than on cv. Menzies. The timing of the first spray is critical in managing both rust and late leaf spot, with the results demonstrating that the first fungicide spray on cv. Sutherland should be applied as soon as rust and LLS are first seen on cv. Menzies. In most trials spray intervals of 14 days or 21 days were suitable to effectively control rust and LLS. In years with low disease pressure, few, if any, fungicide applications will be needed to manage the diseases, but in other years up to four sprays may be necessary. © Australasian Plant Pathology Society Inc. 2012.
Resumo:
The banana-spotting bug, Amblypelta lutescens lutescens Distant (Heteroptera: Coreidae), is one of the principal pests of tree fruits and nuts across northern and eastern Australia. Apart from visual damage assessment, there are currently no reliable methods for monitoring bug activity to aid management decisions. An attractant pheromone for this species that could be used as a trap lure could potentially fill this void. Earlier, two male-specific compounds were identified in airborne extracts from A. lutescens lutescens, (E,E)-α-farnesene and (R,E)-nerolidol; an unknown compound with a molecular weight 220 was also detected. We now report the identification of this hitherto unknown compound as (R,E,E)-α-farnesene-10,11-oxide. Synthesis of this epoxide was conducted using a regioselective asymmetric dihydroxylation of a sulfolene. A blend mimicking the natural proportions of (E,E)-α-farnesene, (R,E)-nerolidol, and (R,E,E)-α-farnesene-10,11- oxide attracted male and female A. lutescens lutescens as well as nymphs in the field, verifying that the aggregation pheromone comprises or is contained within this group of compounds. Copyright © 2012 Ashot Khrimian et al.
Resumo:
Variation in the reaction of cereal cultivars to crown rot caused by Fusarium spp., in particular Fusarium pseudograminearum, was identified over 50 yrs ago, however the parameters and pathways of infection by F. pseudograminearum remain poorly understood. Seedlings of wheat, barley and oat genotypes that differ in susceptibility to crown rot were inoculated with a mixture of F. pseudograminearum isolates. Seedlings were harvested from 7 to 42 days after inoculation and expanded plant parts were rated for severity of visible disease symptoms. Individual leaf sheaths were placed onto nutrient media and fungal colonies emerging from the leaf sheathes were counted to estimate the degree of fungal spread within the host tissue. Significant differences in both the timing and the severity of disease symptoms were observed in the leaf sheath tissues of different host genotypes. Across all genotypes and plant parts examined, the development of visible symptoms closely correlated with the spread of the fungus into that tissue. The degree of infection of the coleoptile and sub-crown internode varied between genotypes, but was unrelated to the putative resistance of the host. In contrast leaf sheath tissues of the susceptible barley cv. Tallon and bread wheat cv. Puseas scored higher disease ratings and consistently showed faster, earlier spread of the fungus into younger tissues than infections of the oat cv. Cleanleaf or the wheat lines 2-49 and CPI 133814. While initial infections usually spread upwards from near the base of the first leaf sheath, the pathogen did not appear to invade younger leaf sheaths only from the base, but rather spread laterally across from older leaf sheaths into younger, subtended leaf sheaths, particularly as disease progressed. Early in the infection of each leaf sheath, disease symptoms in the partially resistant genotypes were less severe than in susceptible genotypes, however as infected leaf sheaths aged, differences between genotypes lessened as disease symptoms approached maximum values. Hence, while visual scoring of disease symptoms on leaf sheaths is a reliable comparative measure of the degree of fungal infection, differences between genotypes in the development of disease symptoms are more reliably assessed using the most recently expanded leaf sheaths.
Resumo:
In this proof-of-concept study, an agricultural biocide (imidacloprid) was effectively loaded into the mesoporous silica nanoparticles (MSNs) with different pore sizes, morphologies and mesoporous structures for termite control. This resulted in nanoparticles with a large surface area, tunable pore diameter and small particle size, which are ideal carriers for adsorption and controlled release of imidacloprid. The effect of pore size, surface area and mesoporous structure on uptake and release of imidacloprid was systematically studied. It was found that the adsorption amount and release profile of imidacloprid were dependent on the type of mesoporous structure and surface area of particles. Specifically, MCM-48 type mesoporous silica nanoparticles with a three dimensional (3D) open network structure and high surface area displayed the highest adsorption capacity compared to other types of silica nanoparticles. Release of imidacloprid from these nanoparticles was found to be controlled over 48 hours. Finally, in vivo laboratory testing on termite control proved the efficacy of these nanoparticles as delivery carriers for biopesticides. We believe that the present study will contribute to the design of more effective controlled and targeted delivery for other biomolecules.
Resumo:
The spot or strip application of poisoned protein bait is a lure-and-kill technique used for the management of fruit flies. Knowledge of where flies occur in the crop environment is an important part of maximizing the efficacy of this tool. Bactrocera tryoni is a polyphagous pest of horticulture for which very little is known about its distribution within crops. With particular reference to edge effects, we monitored the abundance of B. tryoni in two crops of different architecture; strawberry and apple. In strawberries, we found more flies on the crop edge early in the fruiting season, which lessened gradually and eventually disappeared as the season progressed. In apple orchards, no such edge effect was observed and flies were found equally throughout the orchard. We postulated these differences may be due to differences in crop height (high vs. short) and/or crop canopy architecture (opened and branched in apple, dense and closed in strawberry). In a field cage trial, we tested these predictions using artificial plants of different height and canopy condition. Height and canopy structure type had no significant effects on fly oviposition and protein feeding, but the ‘apple’ type canopy significantly influenced resting. We thus postulate that there was an edge effect in strawberry because the crop was not providing resting sites and flies were doing so in vegetation around the field margins. The finding that B. tryoni shows different resting site preferences based on plant architecture offers the potential for strategic manipulation of the fly through specific border or inter-row plantings.
Resumo:
Glyphosate resistance is a rapidly developing threat to profitability in Australian cotton farming. Resistance causes an immediate reduction in the effectiveness of in-crop weed control in glyphosate-resistant transgenic cotton and summer fallows. Although strategies for delaying glyphosate resistance and those for managing resistant populations are qualitatively similar, the longer resistance can be delayed, the longer cotton growers will have choice over which tactics to apply and when to apply them. Effective strategies to avoid, delay, and manage resistance are thus of substantial value. We used a model of glyphosate resistance dynamics to perform simulations of resistance evolution in Sonchus oleraceus (common sowthistle) and Echinochloa colona (awnless barnyard grass) under a range of resistance prevention, delaying, and management strategies. From these simulations, we identified several elements that could contribute to effective glyphosate resistance prevention and management strategies. (i) Controlling glyphosate survivors is the most robust approach to delaying or preventing resistance. High-efficacy, high-frequency survivor control almost doubled the useful lifespan of glyphosate from 13 to 25 years even with glyphosate alone used in summer fallows. (ii) Two non-glyphosate tactics in-crop plus two in-summer fallows is the minimum intervention required for long-term delays in resistance evolution. (iii) Pre-emergence herbicides are important, but should be backed up with non-glyphosate knockdowns and strategic tillage; replacing a late-season, pre-emergence herbicide with inter-row tillage was predicted to delay glyphosate resistance by 4 years in awnless barnyard grass. (iv) Weed species' ecological characteristics, particularly seed bank dynamics, have an impact on the effectiveness of resistance strategies; S. oleraceus, because of its propensity to emerge year-round, was less exposed to selection with glyphosate than E. colona, resulting in an extra 5 years of glyphosate usefulness (18 v. 13 years) even in the most rapid cases of resistance evolution. Delaying tactics are thus available that can provide some or many years of continued glyphosate efficacy. If glyphosate-resistant cotton cropping is to remain profitable in Australian farming systems in the long-term, however, growers must adapt to the probability that they will have to deal with summer weeds that are no longer susceptible to glyphosate. Robust resistance management systems will need to include a diversity of weed control options, used appropriately.
Resumo:
Previously regarded as minor nuisance pests, psocids belonging to the genus Liposcelis now pose a major problem for the effective protection of stored products worldwide. Here we examine the apparent biological and operational reasons behind this phenomenon and why conventional pest management seems to be failing. We investigate what is known about the biology, behavior, and population dynamics of major pest species to ascertain their strengths, and perhaps find weaknesses, as a basis for a rational pest management strategy. We outline the contribution of molecular techniques to clarifying species identification and understanding genetic diversity. We discuss progress in sampling and trapping and our comprehension of spatial distribution of these pests as a foundation for developing management strategies. The effectiveness of various chemical treatments and the availability and potential of nonchemical control methods are critically examined. Finally, we identify research gaps and suggest future directions for research.
Resumo:
The root-lesion nematode, Pratylenchus thornei, can reduce wheat yields by >50%. Although this nematode has a broad host range, crop rotation can be an effective tool for its management if the host status of crops and cultivars is known. The summer crops grown in the northern grain region of Australia are poorly characterised for their resistance to P. thornei and their role in crop sequencing to improve wheat yields. In a 4-year field experiment, we prepared plots with high or low populations of P. thornei by growing susceptible wheat or partially resistant canaryseed (Phalaris canariensis); after an 11-month, weed-free fallow, several cultivars of eight summer crops were grown. Following another 15-month, weed-free fallow, P. thornei-intolerant wheat cv. Strzelecki was grown. Populations of P. thornei were determined to 150 cm soil depth throughout the experiment. When two partially resistant crops were grown in succession, e.g. canaryseed followed by panicum (Setaria italica), P. thornei populations were <739/kg soil and subsequent wheat yields were 3245 kg/ha. In contrast, after two susceptible crops, e.g. wheat followed by soybean, P. thornei populations were 10 850/kg soil and subsequent wheat yields were just 1383 kg/ha. Regression analysis showed a linear, negative response of wheat biomass and grain yield with increasing P. thornei populations and a predicted loss of 77% for biomass and 62% for grain yield. The best predictor of wheat yield loss was P. thornei populations at 0-90 cm soil depth. Crop rotation can be used to reduce P. thornei populations and increase wheat yield, with greatest gains being made following two partially resistant crops grown sequentially.