963 resultados para Pediatrics Hematopoietic Stem Cell Transplantation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our aim was to compare the osteogenic potential of mononuclear cells harvested from the iliac crest combined with bovine bone mineral (BBM) (experimental group) with that of autogenous cancellous bone alone (control group). We studied bilateral augmentations of the sinus floor in 6 adult sheep. BBM and mononuclear cells (MNC) were mixed and placed into one side and autogenous bone in the other side. Animals were killed after 8 and 16 weeks. Sites of augmentation were analysed radiographically and histologically. The mean (SD) augmentation volume was 3.0 (1.0) cm(3) and 2.7 (0.3) cm(3) after 8 and 16 weeks in the test group, and 2.8 (0.3) cm(3) (8 weeks) and 2.8 (1.2) cm(3) (16 weeks) in the control group, respectively. After 8 weeks, histomorphometric analysis showed 24 (3)% BBM, and 19 (11)% of newly formed bone in the test group. The control group had 20 (13%) of newly formed bone. Specimens after 16 weeks showed 29 (12%) of newly formed bone and 19 (3%) BBM in the test group. The amount of newly formed bone in the control group was 16 (6%). The results show that mononuclear cells, including mesenchymal stem cells, in combination with BBM as the biomaterial, have the potential to form bone. (C) 2009 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of mesenchymal stem cell ( MSC) sources that are easily obtainable is of utmost importance. Several studies have shown that MSCs could be isolated from umbilical cord (UC) units. However, the presence of MSCs in umbilical cord blood (UCB) is controversial. A possible explanation for the low efficiency of MSCs from UCB is the use of different culture conditions by independent studies. Here, we compared the efficiency in obtaining MSCs from unrelated paired UCB and UC samples harvested from the same donors. Samples were processed simultaneously, under the same culture conditions. Although MSCs from blood were obtained from only 1 of the 10 samples, we were able to isolate large amounts of multi-potent MSCs from all UC samples, which were able to originate different cell lineages. Since the routine procedure in UC banks has been to store the blood and discard other tissues, such as the cord and/or placenta, we believe our results are of immediate clinical value. Furthermore, the possibility of originating different cell lines from the UC of neonates born with genetic defects may provide new cellular research models for understanding human malformations and genetic disorders, as well as the possibility of testing the effects of different therapeutic drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adipose tissue may represent a potential source of adult stem cells for tissue engineering applications in veterinary medicine. It can be obtained in large quantities, under local anesthesia, and with minimal discomfort. In this study, canine adipose tissue was obtained by biopsy from subcutaneous adipose tissue or by suction-assisted lipectomy (i.e., liposuction). Adipose tissue was processed to obtain a fibroblast-like population of cells similar to human adipose-derived stem cells (hASCs). These canine adipose-derived stem cells (cASCs) can be maintained in vitro for extended periods with stable population doubling and low levels of senescence. Immunofluorescence and flow cytometry show that the majority of cASCs are of mesodermal or mesenchymal origin. cASCs are able to differentiate in vitro into adipogenic, chondrogenic, myogenic, and osteogenic cells in the presence of lineage-specific induction factors. In conclusion, like human lipoaspirate, canine adipose tissue may also contain multipotent cells and represent an important stem cell source both for veterinary cell therapy as well as preclinical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human monocytes can be differentiated into immature dendritic cells (DCs) in the presence of serum and cytokines. One of the main functions of immature DCs is to capture and process antigens. Following maturation, they differentiate into antigen presenting cells. The role of complement in the differentiation process from monocytes towards immature DCs remains elusive. Here we demonstrate that complement 3 (C3) has a regulatory impact on the expression of specific DC surface molecules and DC-derived cytokine production during DC differentiation. We isolated human adherent peripheral blood mononuclear cells, which were cultured in the presence of GM-CSF plus IL-4 in medium supplemented with normal human serum or C3 deficient serum. The lack of C3 during DC differentiation negatively impacted the expression of C-type lectin receptor DC-SIGN, the antigen presenting molecules HLA-DR and CD1a, and the costimulatory molecules CD80 and CD86. Further, the spontaneous production of IL-6 and IL-12 was reduced in the absence of C3. Moreover, the maturation of immature DCs in response to LPS challenge was impaired in the absence of C3 as evidenced by reduced MHC-II, co-stimulatory molecule expression as well as modulated IL-12 and TNF-alpha production. Collectively, our results provide evidence for a novel role of C3 as a critical cofactor in human DC differentiation and maturation. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Models for the study of hematopoietic stem cells in dogs provide important information for bone marrow transplantation in humans. Recent studies have reported the importance of human umbilical cord blood (UCB) as an alternative to allogenic bone marrow for hematopoietic reconstitution. However, there are no studies on the UCB cells of dogs. Objective: the aim of this experiment was to characterize and quantify the blood cells of the umbilical cord of dogs. Methods: the blood of the umbilical cord of 20 neonatal dogs, delivered at term, with a median gestation time of 58 days, was collected with a 5-mL syringe containing EDTA. Total RBC, WBC, and platelet counts, HCT, hemoglobin (Hgb) concentration, and RBC indices were determined using an automatic cell counter. The differential leukocyte count was determined manually in blood smears stained with May-Grunwald-Giemsa. Reticulocyte percentages were determined on blood smears stained with brilliant cresyl blue and counterstained with May-Grunwald Giemsa. Results: the MCHC and numbers of RBCs, WBCs, neutrophils, and eosinophils in UCB were lower as compared with reference values for the peripheral blood of healthy neonatal and adult dogs; whereas, the MCV and reticulocyte percentages were higher. Conclusion: Erythrocyte macrocytosis and hypochromasia in UCB were consistent with marked reticulocytosis and indicative of high erythropoietic activity. The results of this study are an important first step in the characterization of UCB from neonatal dogs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural stem/progenitor cell (NSP) biology and neurogenesis in adult central nervous system (CNS) are important both towards potential future therapeutic applications for CNS repair, and for the fundamental function of the CNS. In the present study, we report the characterization of NSP population from subventricular zone (SVZ) of neonatal piglet brain using in vivo and in vitro systems. We show that the nestin and vimentin-positive neural progenitor cells are present in the SVZ of the lateral ventricles of neonatal piglet brain. In vitro, piglet NSPs proliferated as neurospheres, expressed the typical protein of neural progenitors, nestin and a range of well-established neurodevelopmental markers. Upon dissociation and subculture, piglet NSPs differentiated into neurons and glial cells. Clonal analysis demonstrates that piglet NSPs are multi-potent and retain the capacity to generate both glia and neurons. These cells expressed VEGF, VEGFR1, VEGFR2 and Neuropilin-1 and -2 mRNAs. Real time PCR revealed that SVZ NSPs from newborn piglet expressed total VEGF and all VEGF splice variants. These findings show that piglet NSPs may be helpful to more effectively design growth factor based strategies to enhance endogenous precursor cells for cell transplantation studies potentially leading to the application of this strategy in the nervous system disease and injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor (G-CSF) acts on precursor hematopoietic cells to control the production and maintenance of neutrophils. Recombinant G-CSF (re-G-CSF)is used clinically to treat patients with neutropenia and has greatly reduced the infection risk associated with bone marrow transplantation. Cyclic hematopoiesis, a stem cell defect characterized by severe recurrent neutropenia, occurs in man and grey collie dogs, and can be treated by administration of re-G-CSF. Availability of the rat G-CSF cDNA would benefit the use of rats as models of gene therapy for the treatment of cyclic hematopoiesis. In preliminary rat experiments, retroviral-mediated expression of canine G-CSF caused neutralizing antibody formation which precluded long-term increases in neutrophil counts. To overcome this problem we cloned the rat G-CSF cDNA from RNA isolated from skin fibroblasts. The rat G-CSF sequence shared a high degree of identity in both the coding and non-coding regions with both the murine G-CSF (85%) and human G-CSF (74%). The signal peptides of murine and human G-CSF both contained 30 amino acids (aa), whereas the deduced signal sequence for rat G-CSF possessed 21 aa. A retrovirus encoding the rat G-CSF cDNA synthesized bioactive G-CSF from transduced vascular smooth muscle cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emphysema is characterized by destruction of alveolar walls with loss of gas exchange surface and consequent progressive dyspnea. This study aimed to evaluate the efficiency of cell therapy with bone marrow mononuclear cells (BMMC) in an animal model of elastase-induced pulmonary emphysema. Emphysema was induced in C57Bl/J6 female mice by intranasal instillation of elastase. After 21 days, the mice received bone marrow mononuclear cells from EGFP male mice with C57Bl/J6 background. The groups were assessed by comparison and statistically significant differences (p & 0. 05) were observed among the groups treated with BMMC and evaluated after 7, 14 and 21 days. Analysis of the mean linear intercept (Lm) values for the different groups allowed to observe that the group treated with BMMC and evaluated after 21 days showed the most significant result. The group that received no treatment showed a statistically significant difference when compared to other groups, except the group treated and evaluated after 21 days, evidencing the efficacy of cell therapy with BMMC in pulmonary emphysema. © 2012 Springer Science+Business Media New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Chronic obstructive pulmonary disease is a major inflammatory disease of the airways and an enormous therapeutic challenge. Within the spectrum of chronic obstructive pulmonary disease, pulmonary emphysema is characterized by the destruction of the alveolar walls with an increase in the air spaces distal to the terminal bronchioles but without significant pulmonary fibrosis. Therapeutic options are limited and palliative since they are unable to promote morphological and functional regeneration of the alveolar tissue. In this context, new therapeutic approaches, such as cell therapy with adult stem cells, are being evaluated.OBJECTIVE This article aims to describe the follow-up of up to 3 years after the beginning of a phase I clinical trial and discuss the spirometry parameters achieved by patients with advanced pulmonary emphysema treated with bone marrow mononuclear cells.METHODS Four patients with advanced pulmonary emphysema were submitted to autologous infusion of bone marrow mononuclear cells. Follow-ups were performed by spirometry up to 3 years after the procedure.RESULTS The results showed that autologous cell therapy in patients having chronic obstructive pulmonary disease is a safe procedure and free of adverse effects. There was an improvement in laboratory parameters (spirometry) and a slowing down in the process of pathological degeneration. Also, patients reported improvements in the clinical condition and quality of life.CONCLUSIONS Despite being in the initial stage and in spite of the small sample, the results of the clinical protocol of cell therapy in advanced pulmonary emphysema as proposed in this study, open new therapeutic perspectives in chronic obstructive pulmonary disease. It is worth emphasizing that this study corresponds to the first study in the literature that reports a change in the natural history of pulmonary emphysema after the use of cell therapy with a pool of bone marrow mononuclear cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lymphoma represents the most prevalent hematopoietic malignancy in small animal medicine. It is highly responsible to chemotherapy and therefore several protocols are used as therapeutic tools. For that reason, the bone marrow transplantation, enshrined in human medicine through initial trial in canine patients, has increasingly become the focus of studies in order to make it a reality also in veterinary medicine. First, the treatment with the chosen chemotherapy protocol is made. As complete remission of lymphoma is observed, it must be initiated the bone marrow harvesting. The obtained material is subjected to the processes of erythrocyte depletion, plasma depletion, cryoprotectants addition, total nuclear cells counting, hematopoietic progenitor quantification, analysis of cell viability and freezing. Following that, with radiotherapy or application of cyclophosphamide, the conditioning phase of the patient who is receiving the transplantation is carried out. The bags containing hematopoietic stem cells are then thawed and transplanted into the receptor organism. Support with hematopoietic stem cells allows the use of lethal doses of chemotherapy or radiotherapy and has been shown to considerably raise the disease remission time and survival rate of the canine patients

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New strategies to fulfill craniofacial bone defects have gained attention in recent years due to the morbidity of autologous bone graft harvesting. We aimed to evaluate the in vivo efficacy of bone tissue engineering strategy using mesenchymal stem cells associated with two matrices (bovine bone mineral and α-tricalcium phosphate), compared to an autologous bone transfer. A total of 28 adult, male, non-immunosuppressed Wistar rats underwent a critical-sized osseous defect of 5 mm diameter in the alveolar region. Animals were divided into five groups. Group 1 (n = 7) defects were repaired with autogenous bone grafts; Group 2 (n = 5) defects were repaired with bovine bone mineral free of cells; Group 3 (n = 5) defects were repaired with bovine bone mineral loaded with mesenchymal stem cells; Group 4 (n = 5) defects were repaired with α-tricalcium phosphate free of cells; and Group 5 (n = 6) defects were repaired with α-tricalcium phosphate loaded with mesenchymal stem cells. Groups 2-5 were compared to Group 1, the reference group. Healing response was evaluated by histomorphometry and computerized tomography. Histomorphometrically, Group 1 showed 60.27% ± 16.13% of bone in the defect. Groups 2 and 3 showed 23.02% ± 8.6% (p = 0.01) and 38.35% ± 19.59% (p = 0.06) of bone in the defect, respectively. Groups 4 and 5 showed 51.48% ± 11.7% (p = 0.30) and 61.80% ± 2.14% (p = 0.88) of bone in the defect, respectively. Animals whose bone defects were repaired with α-tricalcium phosphate and mesenchymal stem cells presented the highest bone volume filling the defects; both were not statistically different from autogenous bone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Limbal stem cells (LSC) are self-renewing, highly proliferative cells in vitro, which express a set of specific markers and in vivo have the capacity to reconstruct the entire corneal epithelium in cases of ocular surface injury. Currently, LSC transplantation is a commonly used procedure in patients with either uni- or bilateral total limbal stem cells deficiency (TLSCD). Although LSC transplantation holds great promise for patients, several problems need to be overcome. In order to find an alternative source of cells that can partially substitute LSC in cornea epithelium reconstruction, we aimed at investigating whether human immature dental pulp stem cells (hIDPSC) would present similar key characteristics as LSC and whether they could be used for corneal surface reconstruction in a rabbit TLSCD model. Materials: We used hIDPSC, which co-express mesenchymal and embryonic stem cell markers and present the capacity to differentiate into derivative cells of the three germinal layers. TLSCD was induced by chemical burn in one eye of rabbits. After 30 days, the opaque tissue formed was removed by superficial keratectomy. Experimental group received undifferentiated hIDPSC, while control group only received amniotic membrane (AM). Both groups were sacrificed after 3 months. Results and conclusions: We have demonstrated, using immunohistochemistry and reverse transcription-polymerase chain reaction, that hIDPSCs express markers in common with LSC, such as ABCG2, integrin beta 1, vimentin, p63, connexin 43 and cytokeratins 3/12. They were also capable of reconstructing the eye surface after induction of unilateral TLSCD in rabbits, as shown by morphological and immunohistochemical analysis using human-specific antibodies against limbal and corneal epithelium. Our data suggest that hIDPSCs share similar characteristics with LSC and might be used as a potential alternative source of cells for corneal reconstruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The diaphragm is the major respiratory muscle affected by Duchenne muscular dystrophy (DMD) and is responsible for causing 80% of deaths. The use of mechanical forces that act on the body or intermittent pressure on the airways improves the quality of life of patients but does not prevent the progression of respiratory failure. Thus, diseases that require tissue repair, such as DMD, represent a group of pathologies that have great potential for cell therapy. The application of stem cells directly into the diaphragm instead of systemic application can reduce cell migration to other affected areas and increase the chances of muscle reorganisation. The mdx mouse is a suitable animal model for this research because its diaphragmatic phenotype is similar to human DMD. Therefore, the aim of this study was to assess the potential cell implantation in the diaphragm muscle after the xenotransplantation of stem cells. Methods: A total of 9 mice, including 3 control BALB/Cmice, 3 5-month-old mdx mice without stem cell injections and 3 mdx mice injected with stem cells, were used. The animals injected with stem cells underwent laparoscopy so that stem cells from GFP-labelled rabbit olfactory epithelium could be locally injected into the diaphragm muscle. After 8 days, all animals were euthanised, and the diaphragm muscle was dissected and subjected to histological and immunohistochemical analyses. Results: Both the fresh diaphragm tissue and immunohistochemical analyses showed immunopositive GFP labelling of some of the cells and immunonegativity of myoblast bundles. In the histological analysis, we observed a reduction in the inflammatory infiltrate as well as the presence of a few peripheral nuclei and myoblast bundles. Conclusion: We were able to implant stem cells into the diaphragm via local injection, which promoted moderate muscle reorganisation. The presence of myoblast bundles cannot be attributed to stem cell incorporation because there was no immunopositive labelling in this structure. It is believed that the formation of the bundles may have been stimulated by cellular signalling mechanisms that have not yet been elucidated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic Obstructive Pulmonary Disease (COPD) can be briefly described as air flow limitation and chronic dyspnea associated to an inflammatory response of the respiratory tract to noxious particles and gases. Its main feature is the obstruction of airflow and consequent chronic dyspnea. Despite recent advances, and the development of new therapeutic, medical and clinical approaches, a curative therapy is yet to be achieved. Therapies involving the use of tissue-specific or donor derived cells present a promising alternative in the treatment of degenerative diseases and injuries. Recent studies demonstrate that mesenchymal stem cells have the capacity to modulate immune responses in acute lung injury and pulmonary fibrosis in animal models, as well as in human patients. Due to these aspects, different groups raised the possibility that the stem cells from different sources, such as those found in bone marrow or adipose tissue, could act preventing the emphysematous lesion progression. In this paper, it is proposed a review of the current state of the art and future perspectives on the use of cell therapy in obstructive lung diseases.