966 resultados para Pd(II)-amino complexes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coordination chemistry of the ligand N-thiazol-2-yl-toluenesulfonamidate towards the copper(II) ion has been investigated using an electrochemical synthesis method. The X-ray structure of this complex was elucidated and is discussed. The compound crystallised in the monoclinic crystal system, P2(1)/c space group with a = 17.3888(9), b = 16.3003(9), c = 18.3679(9) angstrom and beta = 114.3640(10)degrees. Four bidentate sulfathiazolato anions bridge two metal centers in a paddle-wheel fashion, with the nitrogen atoms as donors to give a dimeric species with a Cu center dot center dot center dot Cu distance of 2.7859(5) angstrom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complex mer-[RuCl(3)(dppb)(H(2)O)] [dppb = 1,4-bis(diphenylphosphino)butane] was used as a precursor in the synthesis of the complexes tc-[RuCl(2)(CO)(2)(dppb)], ct-[RuCl(2)(CO)(2)(dppb)]. cis-[RuCl(2)(dppb)(Cl-bipy)], [RuCl(2Ac4mT)(dppb)] (2Ac4mT = N(4)-meta-tolyl-2-acetylpyridine thiosemicarbazone ion) and trans-[RuCl(2)(dppb)(mang)] (mang = mangiferin or 1,3,6,7-tetrahydroxyxanthone-C2-beta-D-glucoside) complexes. For the synthesis of Run complexes, the Ru(III) atom in mer-[RuCl(3)(dppb)(H(2)O)] may be reduced by H(2)(g), forming the intermediate [Ru(2)Cl(4)(dppb)(2)], or by a ligand (such as H2Ac4mT or mangiferin). The X-ray structures of the cis-[RuCl(2)(dppb)(Cl-bipy)], tc-[RuCl(2)(CO)(2)(dppb)] and [RuCl(2Ac4mT)(dPpb)] complexes were determined. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purple acid phosphatases (PAPs) are a group of metallohydrolases that contain a dinuclear Fe(II)M(II) center (M(II) = Fe, Mn, Zn) in the active site and are able to catalyze the hydrolysis of a variety of phosphoric acid esters. The dinuclear complex [(H(2)O)Fe(III)(mu-OH)Zn(II)(L-H)](CIO(4))(2) (2) with the ligand 2-[N-bis(2-pyridylmethyl)aminomethyl]-4-methyl-6-[N-(2-pyridylmethyl)(2-hydroxybenzyl) aminomethyl]phenol (H(2)L-H) has recently been prepared and is found to closely mimic the coordination environment of the Fe(III)Zn(II) active site found in red kidney bean PAP (Neves et al. J. Am. Chem. Soc. 2007, 129, 7486). The biomimetic shows significant catalytic activity in hydrolytic reactions. By using a variety of structural, spectroscopic, and computational techniques the electronic structure of the Fe(III) center of this biomimetic complex was determined. In the solid state the electronic ground state reflects the rhombically distorted Fe(III)N(2)O(4) octahedron with a dominant tetragonal compression align ad along the mu-OH-Fe-O(phenolate) direction. To probe the role of the Fe-O(phenolate) bond, the phenolate moiety was modified to contain electron-donating or -withdrawing groups (-CH(3), -H, -Br, -NO(2)) in the 5-position. Tie effects of the substituents on the electronic properties of the biomimetic complexes were studied with a range of experimental and computational techniques. This study establishes benchmarks against accurate crystallographic struck ral information using spectroscopic techniques that are not restricted to single crystals. Kinetic studies on the hydrolysis reaction revealed that the phosphodiesterase activity increases in the order -NO(2)<- Br <- H <- CH(3) when 2,4-bis(dinitrophenyl)phosphate (2,4-bdnpp) was used as substrate, and a linear free energy relationship is found when log(k(cat)/k(0)) is plotted against the Hammett parameter a. However, nuclease activity measurements in the cleavage of double stranded DNA showed that the complexes containing the electron-withdrawing -NO(2) and electron-donating CH3 groups are the most active while the cytotoxic activity of the biomimetics on leukemia and lung tumoral cells is highest for complexes with electron-donating groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ""Ru(P-P)"" unit (P-P = diphosphine) is recognized to be an important core in catalytic species for hydrogenation of unsaturated organic substrates. Thus, in this study we synthesized six new complexes containing this core, including the binuclear complex [(dppb)(CO)Cl(2)Ru-pz-RuCl(2)(CO)(dPPb)] (pz = pyrazine) which can be used as a precursor for the synthesis of cationic carbonyl species of general formula [RuCl(CO)(dppb)(N-N)]PF(6) (N-N = diimine). Complexes with the formula (RuCl(py)(dppb)(N-N)]PF(6) were synthesized by exhaustive electrolysis of these carbonyl compounds or from the precursors [RuCl(2)(dppb)(N-N)]. The new complexes were characterized by microanalysis, conductivity measurements, IR and (31)P{(1)H)} NMR spectroscopy, cyclic voltammetry and X-ray crystallography. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complexes [RuCl(H4NO(2)Fo4M)(bipy)(dppb)]PF(6) (1), [RuCl(H4NO(2)Fo4M)(Mebipy)(dppb)]PF(6) (2), [RuCl(H4NO(2)Fo4M)(phen)(dppb)]PF(6) (3), [RuCl(H4NO(2)Ac4M)(bipy)(dppb)]PF(6) (4), [RuCl(H4NO(2)Ac4M)(Mebipy)(dppb)]PF(6) (5) and [RuCl(H4NO(2)Ac4M)(phen)(dppb)]PF(6) (6) with N(4)-methyl-4-nitrobenzalde hyde thiosemicarbazone (H4NO(2)Fo4M) and N(4)-methyl-4-nitroacetophenone thiosemicarbazone (H4NO(2) Ac4M) were obtained from [RuCl(2)(bipy)(dppb)], [RuCl(2)(Mebipy)(dppb)], and [RuCl(2)(phen)(dppb)], (dppb = 1,4-bis(diphenylphospine)butane; bipy = 2,2`-bipyridine: Mebipy = 4,4`-dimethyl-2,2`-bipyridine: phen = 1,10-phenanthroline). In all cases the thiosemicarbazone is attached to the metal center through the sulfur atom. Complexes (1-6), together with the corresponding ligands and the Ru precursors were evaluated for their ability to in vitro suppress the growth of Trypanosoma cruzi. All complexes were more active than their corresponding ligands and precursors. Complexes (1-3) and (5) revealed to be the most active among all studied compounds with ID(50) = 0.6-0.8 mu M. In all cases the association of the thiosemicarbazone with ruthenium, dppb and bipyridine or phenanthroline in one same complex proved to be an excellent strategy for activity improvement. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction between angiotensin II (AII, DRVYIHPF) and its analogs carrying 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) and detergents-negatively charged sodium dodecyl sulfate (SDS) and zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS)-was examined by means of EPR, CD, and fluorescence. EPR spectra of partially active TOAC(1)-AII and inactive TOAC(3)-AII in aqueous solution indicated fast tumbling, the freedom of motion being greater at the N-terminus. Line broadening occurred upon interaction with micelles. Below SDS critical micelle concentration, broader lines indicated complex formation with tighter molecular packing than in micelles. Small changes in hyperfine splittings evinced TOAC location at the micelle-water interface. The interaction with anionic micelles was more effective than with zwitterionic micelles. Peptide-micelle interaction caused fluorescence increase. The TOAC-promoted intramolecular fluorescence quenching was more, pronounced for TOAC(3)-AII because of the proximity between the nitroxide and Tyr(4). CD spectra showed that although both AII and TOAC(1)-AII presented flexible conformations in water, TOAC(3)-AII displayed conformational restriction because of the TOAC-imposed bend (Schreier et al., Biopolymers 2004, 74, 389). In HPS, conformational changes were observed for the labeled peptides at neutral and basic pH. In SDS, all peptides underwent pH-dependent conformational changes. Although the spectra suggested similar folds for All and TOAC(1)-AII, different conformations were acquired by TOAC(3)-AII. The membrane environment has been hypothesized to shift conformational equilibria so as to stabilize the receptor-bound conformation of ligands. The fact that TOAC(3)-AII is unable to acquire conformations similar to those of native AII and partially active TOAC(1)-AII is probably the explanation for its lack of biological activity. (C) 2009 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 92: 525-537, 2009.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report an effective approach for the construction of a biomimetic sensor of multicopper oxidases by immobilizing a cyclic-tetrameric copper(II) species, containing the ligand (4-imidazolyl)ethylene-2-amino-1-ethylpyridine (apyhist), in the Nafion (R) membrane on a vitreous carbon electrode surface. This complex provides a tetranuclear arrangement of copper ions that allows an effective reduction of oxygen to water, in a catalytic cycle involving four electrons. The electrochemical reduction of oxygen was studied at pH 9.0 buffer solution by using cyclic voltammetry, chronoamperometry, rotating disk electrode voltammetry and scanning electrochemical microscopy techniques. The mediator shows good electrocatalytic ability for the reduction of O(2) at pH 9.0, with reduction of overpotential (350 mV) and increased current response in comparison with results obtained with a bare glassy carbon electrode. The heterogeneous rate constant (k(ME)`) for the reduction of O(2) at the modified electrode was determined by using a Koutecky-Levich plot. In addition, the charge transport rate through the coating and the apparent diffusion coefficient of O(2) into the modifier film were also evaluated. The overall process was found to be governed by the charge transport through the coating, occurring at the interface or at a finite layer at the electrode/coating interface. The proposed study opens up the way for the development of bioelectronic devices based on molecular recognition and self-organization. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction Of Cu(ClO(4))(2)center dot 6H(2)O with dimethylglyoxime (H(2)dmg) in a 1:1 mole ratio in aqueous methanol at room temperature affords the dinuclear complex [Cu(2)(mu-Hdmg)(4)] (1). Reaction of 1 with [Cu(bpy)(H(2)O)(2)](ClO(4))(2) (bpy = 2,2`-bipyridine) in a 1:1 mole ratio in aqueous methanol at room temperature yields the tetranuclear complex [Cu(2)(mu-HdMg)(2)(mu-dMg)(2)(bpy)(2)(H(2)O)(2)](ClO(4))(2) (2). The direct reaction of Cu(ClO(4))(2)center dot 6H(2)O with H(2)dmg and bpy in a 2:21 mole ratio in aqueous methanol at room temperature also yields 2 quantitatively. The complexes 1 and 2 were structurally characterized by X-ray crystallography. Unlike the binding in Ni/Co-dmg, two different types of N-O bridging modes during the oxime based metallacycle formation and stacking of square planar units have been identified in these complexes. The neutral dinuclear complex 1 has CuN(4)O coordination spheres and complex 2 consists of a dicationic [Cu(2)(mu-HdMg)(2)(mu-dMg)(2)(bpy)(2)(H(2)O)(2)](2+) unit and two uncoordinated ClO(4)(-) anions having CuN(4)O and CuN(2)O(3) coordination spheres. The two copper(II) ions are at a distance of 3.846(8) angstrom in 1 for the trans out of plane link and at 3.419(10) and 3.684(10) angstrom in 2 for the trans out of plane and cis in plane arrangements, respectively. The average Cu-N(oxime) distances are 1.953 and 1.935 angstrom, respectively. The average basal and apical Cu-N(oxime) distances are 1.945, 2.295 and 2.429 angstrom. The UV-Vis spectra of 2 is similar to the spectrum of the reaction mixture of 1 and [Cu(bpy)(H(2)O)(2)](2+). Variable temperature magnetic properties measurement shows that the interaction between the paramagnetic copper centers in complex I is antiferromagnetic in nature. The EPR spectra of frozen solution of the complexes at 77 K consist of axially symmetric fine-structure transitions (Delta M(S) = 1) and half-field signals (Delta M(S) = 2) at ca. 1600 G, suggesting the presence of appreciable Cu-Cu interactions. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tetrapyridylporphyrins containing four chloro(2,2`-bipyridine)platinum(II) complexes attached at the meta (3-H(2)TPtPyP) and para (4-H(2)TPtPyP) positions of the peripheral pyridine ligands were synthesized and their interaction with DNA investigated. The compounds were isolated in the solid state and characterized by means of spectroscopic and analytical techniques. According to molecular simulations, the two isomers exhibit contrasting structural characteristics, consistent with a saddle shape configuration for 3-H(2)TPtPyP and a planar geometry for 4-H(2)TPtPyP. Surface plasmon resonance studies were carried out on the interaction of the complexes with calf thymus DNA, revealing a preferential binding of 3-H(2)TPtPyP, presumably at the DNA major grooves. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anionic complexes [Cu(L(1-))(3)](1-), L(-) = dopasemiquinone or L-dopasemiqui none, were prepared and characterized. The complexes are stable in aqueous solution showing intense absorption bands at ca. 605 nm for Cu(II)-L-dopasemiquinone and at ca. 595 nm for Cu(II)-dopasemiquinone in the UV-vis spectra, that can be assigned to intraligand transitions. Noradrenaline and adrenaline, under the same reaction conditions, did not yield Cu-complexes, despite the bands in the UV region showing that noradrenaline and adrenaline were oxidized during the process. The complexes display a resonance Raman effect, and the most enhanced bands involve ring modes and particularly the vCC + vCO stretching mode at ca. 1384 cm(-1). The free radical nature of the ligands and the oxidation state of the Cu(II) were confirmed by the EPR spectra that display absorptions assigned to organic radicals with g= 2.0005 and g = 2.0923, and for Cu(II) with g = 2.008 and g = 2.0897 for L-dopasemiquinone and dopasemiquinone, respectively. The possibility that dopamine and L-dopa can form stable and aqueous-soluble copper complexes at neutral pH, whereas noradrenaline and adrenaline cannot, may be important in understanding how Cu(II)-dopamine crosses the cellular membrane as proposed in the literature to explain the role of copper in Wilson disease. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two porous mixed valent diruthenium(II,III)-dicarboxylate compounds have been prepared and characterized by spectroscopic methods, X-ray diffraction and thermogravimetry. Crystalline solids of [Ru(2)(tere)(2)Cl] center dot 3.5H(2)O (tere=terephthalate) and [Ru(2)(adip)(2)Cl] center dot 1.5H(2)O (adip=adipate) consist of extended chains in which polymeric layers of multiply metal-metal bonded [Ru(2)](5+) cores are bridged by dicarboxylate ligands in paddlewheel type geometries. Units of [Ru(2)(dicarboxylate)(2)](n)(+) are linked by axial bridging chloride ions generating three-dimensional networks. The polymers loose non-bonded water molecules at low temperatures but do not undergo thermal decomposition below 280-300 degrees C. Both of compounds exhibit high BET surface areas, [Ru(2)(tere)(2)Cl]: 235 m(2) g(-1) and [Ru(2)(adip)(2)Cl]: 281 m(2) g(-1), and occlude similar numbers of mol of N(2) per mol of metal. The terephthalate ligand generated an organized structure with supermicropores (total pore size of 0.24 cm(3) g(-1)) while the adipate ligand led to a mesoporous structure (total pore sizes of 0.47 cm(3) g(-1)) for the corresponding diruthenium(II,III)-dicarboxylate polymers. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A spectroscopic study was performed showing that the [Fe(III)(L(2-))(2)](1-) (L(2-) = dopacatecholate) complex reacts with Ni(II), Co(II) and Zn(II) in an aqueous solution containing S(2)O(3)(2-) resulting in the soluble [M(L(1-))(3)](1-) (L(1-) = dopasemiquinone; M = Ni(II), Co(II) or Zn(II) complex species. The Raman and IR spectra of the [CTA][M(L(1-))(3)] complexes, CTA hexadecyltrimethylammonium cation, in the solid state were obtained. The kinetic constants for the metal substitution reactions were determined at four different temperatures, providing values for Delta W(not equal) Delta S(not equal) and Delta G(not equal). The reactions were slow (k = 10(-1)1 M s(-1)) and endothermic. The system investigated can be considered as a simplified model to explain some aspects of siderophore chemistry. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose the use of functionalized superparamagnetic nanoparticles for capturing, and transporting analytes, in association with an external miniature magnet to deposit such nanocarrier species at the electrode surface. This approach can be employed for the electroanalytical determination of chemical species capable of interacting with the nanoparticles, or in the opposite case, to block their response at the electrode surface. The concept was successfully demonstrated by using aminofunctionalized nanoparticles to block the discharge of hexacyanoferrate(II) ions, and to enhance the signals of aquapentacyanoferrate(II) ions via coordination to the surface amino groups. Selective analysis was also performed for silver ions, surpassing the stripping methods in terms of versatility and usefulness. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a previous work [M. Mandaji, et al., this issue] a sample stacking method was theoretically modeled and experimentally demonstrated for analytes with low dpK(a)/dT (analytes carrying carboxylic groups) and BGEs with high dpH/dT (high pH-temperature-coefficients). In that work, buffer pH was modulated with temperature, inducing electrophoretic mobility changes in the analytes. In the present work, the opposite conditions are studied and tested, i.e. analytes with high dpK(a)/dT and BGEs that exhibit low dpH/dT. It is well known that organic bases such as amines, imidazoles, and benzimidazoles exhibit high dpK(a)/dT. Temperature variations induce instantaneous changes on the basicity of these and other basic groups. Therefore, the electrophoretic velocity of some analytes changes abruptly when temperature variations are applied along the capillary. This is true only if BGE pH remains constant or if it changes in the opposite direction of pK(a) of the analyte. The presence of hot and cold sections along the capillary also affects local viscosity, conductivity, and electric field strength. The effect of these variables on electrophoretic velocity and band stacking efficacy was also taken into account in the theoretical model presented. Finally, this stacking method is demonstrated for lysine partially derivatized with naphthalene-2,3-dicarboxaldehyde. In this case, the amino group of the lateral chain was left underivatized and only the alpha amino group was derivatized. Therefore, the basicity of the lateral amino group, and consequently the electrophoretic mobility, was modulated with temperature while the pH of the buffer used remained unchanged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considerando não apenas a importância das antraciclinas na terapêutica do câncer, mas também os efeitos colaterais associados ao uso destas drogas, o presente estudo procurou avaliar a atividade genotóxica de seis antraciclinas em uso clínico - doxorrubicina (DOX), daunorrubicina (DNR), epirrubicina (EPI), idarrubicina (IDA), além dos análogos de última geração, pirarrubicina (THP) e aclarrubicina (ACLA). Para tanto, foi empregado o Teste de Mutação e Recombinação Somática (SMART) em Drosophila melanogaster, que permite a detecção simultânea de mutação gênica e cromossômica, assim como de eventos relacionados com recombinação mitótica - possibilitando quantificar a contribuição deste último parâmetro genético para a genotoxicidade total induzida pelas drogas em estudo. Os dados obtidos a partir desta análise demonstraram que todas as antraciclinas estudadas induziram acréscimos significativos, relacionados tanto à mutação, quanto à recombinação nas células somáticas deste inseto. Além disso, a recombinação mitótica - entre cromossomos homólogos - foi o evento responsável por, aproximadamente, 62 a 100% da toxicidade genética observada. A comparação do potencial genotóxico dos diferentes análogos, através da padronização do número de danos genéticos por unidade de tratamento (mM), caracterizou a ACLA e o THP como as drogas mais potentes – sendo cerca de 20 vezes mais efetivas, como genotoxinas, do que a DOX, o análogo menos potente. Já que a principal ação genotóxica desta família de compostos está relacionada à inibição da topoisomerase II (topo II) – uma enzima que atua no relaxamento da supertorção da dupla hélice de DNA, através da quebra e posterior religação de suas fitas - as diferenças observadas podem ser atribuídas ao mecanismo envolvido neste bloqueio Enquanto os análogos DOX, DNR, EPI, IDA e THP atuam como venenos de topo II - tornando permanentes as quebras induzidas pela enzima - a ACLA inibe a função catalítica desta enzima, impedindo a sua ligação ao DNA. Cabe ainda ressaltar que a genotoxicidade da ACLA não está restrita à sua atividade catalítica sobre a topo II, mas também à sua ação como veneno de topo I e à sua habilidade de intercalar-se na molécula de DNA. Quando a potência genotóxica destas drogas foi associada a suas estruturas químicas, observou-se que substituições no grupamento amino-açúcar levaram a uma maior atividade tóxico-genética, quando comparadas a modificações no cromóforo. Cabe ainda ressaltar que as modificações estruturais, presentes nos análogos DOX, DNR, EPI, IDA e THP, não alteraram a sua ação recombinogênica. No entanto, no que se refere a ACLA, observaram-se decréscimos significativos na indução de recombinação mitótica - que podem ser atribuídas às múltiplas substituições presentes tanto no grupamento amino-açúcar quanto no cromóforo. O conjunto destas observações evidencia que a genotoxicidade total das drogas em estudo está centrada na indução de recombinação homóloga - um evento predominantemente envolvido tanto na iniciação, quanto na progressão do câncer. A alta incidência de tumores secundários, em pacientes submetidos ao tratamento com as antraciclinas, pode, pois, ser atribuída à ação preferencial destas drogas sobre a recombinação mitótica – embora a atividade mutagênica não possa ser desconsiderada.