888 resultados para Parallel processing (Electronic computers) - Research
Resumo:
BACKGROUND In the year 2020, depression will cause the second highest amount of disability worldwide. One quarter of the population will suffer from depression symptoms at some point in their lives. Mental health services in Western countries are overburdened. Therefore, cost-effective interventions that do not involve mental health services, such as online psychotherapy programs, have been proposed. These programs demonstrate satisfactory outcomes, but the completion rate for patients is low. Health professionals' attitudes towards this type of psychotherapy are more negative than the attitudes of depressed patients themselves. The aim of this study is to describe the profile of depressed patients who would benefit most from online psychotherapy and to identify expectations, experiences, and attitudes about online psychotherapy among both patients and health professionals that can facilitate or hinder its effects. METHODS A parallel qualitative design will be used in a randomised controlled trial on the efficiency of online psychotherapeutic treatment for depression. Through interviews and focus groups, the experiences of treated patients, their reasons for abandoning the program, the expectations of untreated patients, and the attitudes of health professionals will be examined. Questions will be asked about training in new technologies, opinions of online psychotherapy, adjustment to therapy within the daily routine, the virtual and anonymous relationship with the therapist, the process of online communication, information necessary to make progress in therapy, process of working with the program, motivations and attitudes about treatment, expected consequences, normalisation of this type of therapy in primary care, changes in the physician-patient relationship, and resources and risks. A thematic content analysis from the grounded theory for interviews and an analysis of the discursive positions of participants based on the sociological model for focus groups will be performed. DISCUSSION Knowledge of the expectations, experiences, and attitudes of both patients and medical personnel regarding online interventions for depression can facilitate the implementation of this new psychotherapeutic tool. This qualitative investigation will provide thorough knowledge of the perceptions, beliefs, and values of patients and clinicians, which will be very useful for understanding how to implement this intervention method for depression.
Resumo:
Researchers working in the field of global connectivity analysis using diffusion magnetic resonance imaging (MRI) can count on a wide selection of software packages for processing their data, with methods ranging from the reconstruction of the local intra-voxel axonal structure to the estimation of the trajectories of the underlying fibre tracts. However, each package is generally task-specific and uses its own conventions and file formats. In this article we present the Connectome Mapper, a software pipeline aimed at helping researchers through the tedious process of organising, processing and analysing diffusion MRI data to perform global brain connectivity analyses. Our pipeline is written in Python and is freely available as open-source at www.cmtk.org.
Resumo:
Through this study, we will measure how the collective MPI operations behaves in virtual and physical clusters, and its impact on the application performance. As we stated before, we will use as a test case the Weather Research and Forecasting simulations.
Resumo:
MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression post-transcriptionally. MiRNAs are implicated in various biological processes associated with obesity, including adipocyte differentiation and lipid metabolism. We used a neuronal-specific inhibition of miRNA maturation in adult mice to study the consequences of miRNA loss on obesity development. Camk2a-CreERT2 (Cre+) and floxed Dicer (Dicerlox/lox) mice were crossed to generate tamoxifen-inducible conditional Dicer knockouts (cKO). Vehicle- and/or tamoxifen-injected Cre+;Dicerlox/lox and Cre+;Dicer+/+ served as controls. Four cohorts were used to a) measure body composition, b) follow food intake and body weight dynamics, c) evaluate basal metabolism and effects of food deprivation, and d) assess the brain transcriptome consequences of miRNA loss. cKO mice developed severe obesity and gained 18 g extra weight over the 5 weeks following tamoxifen injection, mainly due to increased fat mass. This phenotype was highly reproducible and observed in all 38 cKO mice recorded and in none of the controls, excluding possible effects of tamoxifen or the non-induced transgene. Development of obesity was concomitant with hyperphagia, increased food efficiency, and decreased activity. Surprisingly, after reaching maximum body weight, obese cKO mice spontaneously started losing weight as rapidly as it was gained. Weight loss was accompanied by lowered O2-consumption and respiratory-exchange ratio. Brain transcriptome analyses in obese mice identified several obesity-related pathways (e.g. leptin, somatostatin, and nemo-like kinase signaling), as well as genes involved in feeding and appetite (e.g. Pmch, Neurotensin) and in metabolism (e.g. Bmp4, Bmp7, Ptger1, Cox7a1). A gene cluster with anti-correlated expression in the cerebral cortex of post-obese compared to obese mice was enriched for synaptic plasticity pathways. While other studies have identified a role for miRNAs in obesity, we here present a unique model that allows for the study of processes involved in reversing obesity. Moreover, our study identified the cortex as a brain area important for body weight homeostasis.
Resumo:
Arenaviruses merit interest as clinically important human pathogens and include several causative agents, chiefly Lassa virus (LASV), of hemorrhagic fever disease in humans. There are no licensed LASV vaccines, and current antiarenavirus therapy is limited to the use of ribavirin, which is only partially effective and is associated with significant side effects. The arenavirus glycoprotein (GP) precursor GPC is processed by the cellular site 1 protease (S1P) to generate the peripheral virion attachment protein GP1 and the fusion-active transmembrane protein GP2, which is critical for production of infectious progeny and virus propagation. Therefore, S1P-mediated processing of arenavirus GPC is a promising target for therapeutic intervention. To this end, we have evaluated the antiarenaviral activity of PF-429242, a recently described small-molecule inhibitor of S1P. PF-429242 efficiently prevented the processing of GPC from the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and LASV, which correlated with the compound's potent antiviral activity against LCMV and LASV in cultured cells. In contrast, a recombinant LCMV expressing a GPC whose processing into GP1 and GP2 was mediated by furin, instead of S1P, was highly resistant to PF-429242 treatment. PF-429242 did not affect virus RNA replication or budding but had a modest effect on virus cell entry, indicating that the antiarenaviral activity of PF-429242 was mostly related to its ability to inhibit S1P-mediated processing of arenavirus GPC. Our findings support the feasibility of using small-molecule inhibitors of S1P-mediated processing of arenavirus GPC as a novel antiviral strategy.
Resumo:
In healthy individuals, insulin resistance is associated with physiological conditions such as pregnancy or body weight gain and triggers an increase in beta cell number and insulin secretion capacity to preserve normoglycaemia. Failure of this beta cell compensation capacity is a fundamental cause of diabetic hyperglycaemia. Incomplete understanding of the molecular mechanisms controlling the plasticity of adult beta cells mechanisms and how these cells fail during the pathogenesis of diabetes strongly limits the ability to develop new beta cell-specific therapies. Here, current knowledge of the signalling pathways controlling beta cell plasticity is reviewed, and possible directions for future research are discussed.
Resumo:
Most airborne microorganisms are natural components of our ecosystem. Soil, vegetation and animals, including humans, are sources for aerial release of these living or dead cells. In the past, assessment of airborne microorganisms was mainly restricted to occupational health concerns. Indeed, in several occupations, exposure to very high concentrations of non-infectious airborne bacteria and fungi, result in allergenic, toxic or irritant reactions. Recently, the threat of bioterrorism and pandemics have highlighted the urgent need to increase knowledge of bioaerosol ecology. More fundamentally, airborne bacterial and fungal communities begin to draw much more consideration from environmental microbiologists, who have neglected this area for a long time. This increased interest of scientists is to a great part due to the development and use of real-time PCR techniques to identify and quantify airborne microorganisms. Even if the advantages of the PCR technology are obvious, researchers are confronted with new problems. This review describes the methodological state of the art in bioaerosols field and emphasizes the future challenges and perspectives of the real-time PCR-based methods for airborne microorganism studies.
Resumo:
Clinical Decision Support Systems (CDSS) are software applications that support clinicians in making healthcare decisions providing relevant information for individual patients about their specific conditions. The lack of integration between CDSS and Electronic Health Record (EHR) has been identified as a significant barrier to CDSS development and adoption. Andalusia Healthcare Public System (AHPS) provides an interoperable health information infrastructure based on a Service Oriented Architecture (SOA) that eases CDSS implementation. This paper details the deployment of a CDSS jointly with the deployment of a Terminology Server (TS) within the AHPS infrastructure. It also explains a case study about the application of decision support to thromboembolism patients and its potential impact on improving patient safety. We will apply the inSPECt tool proposal to evaluate the appropriateness of alerts in this scenario.
Resumo:
We examined the spatial and temporal variation of species diversity and genetic diversity in a metacommunity comprising 16 species of freshwater gastropods. We monitored species abundance at five localities of the Ain river floodplain in southeastern France, over a period of four years. Using 190 AFLP loci, we monitored the genetic diversity of Radix balthica, one of the most abundant gastropod species of the metacommunity, twice during that period. An exceptionally intense drought occurred during the last two years and differentially affected the study sites. This allowed us to test the effect of natural disturbances on changes in both genetic and species diversity. Overall, local (alpha) diversity declined as reflected by lower values of gene diversity H(S) and evenness. In parallel, the among-sites (beta) diversity increased at both the genetic (F(ST)) and species (F(STC)) levels. These results suggest that disturbances can lead to similar changes in genetic and community structure through the combined effects of selective and neutral processes.
Resumo:
How does the multi-sensory nature of stimuli influence information processing? Cognitive systems with limited selective attention can elucidate these processes. Six-year-olds, 11-year-olds and 20-year-olds engaged in a visual search task that required them to detect a pre-defined coloured shape under conditions of low or high visual perceptual load. On each trial, a peripheral distractor that could be either compatible or incompatible with the current target colour was presented either visually, auditorily or audiovisually. Unlike unimodal distractors, audiovisual distractors elicited reliable compatibility effects across the two levels of load in adults and in the older children, but high visual load significantly reduced distraction for all children, especially the youngest participants. This study provides the first demonstration that multi-sensory distraction has powerful effects on selective attention: Adults and older children alike allocate attention to potentially relevant information across multiple senses. However, poorer attentional resources can, paradoxically, shield the youngest children from the deleterious effects of multi-sensory distraction. Furthermore, we highlight how developmental research can enrich the understanding of distinct mechanisms controlling adult selective attention in multi-sensory environments.
Resumo:
Using game theory, we developed a kin-selection model to investigate the consequences of local competition and inbreeding depression on the evolution of natal dispersal. Mating systems have the potential to favor strong sex biases in dispersal because sex differences in potential reproductive success affect the balance between local resource competition and local mate competition. No bias is expected when local competition equally affects males and females, as happens in monogamous systems and also in polygynous or promiscuous ones as long as female fitness is limited by extrinsic factors (breeding resources). In contrast, a male-biased dispersal is predicted when local mate competition exceeds local resource competition, as happens under polygyny/promiscuity when female fitness is limited by intrinsic factors (maximal rate of processing resources rather than resources themselves). This bias is reinforced by among-sex interactions: female philopatry enhances breeding opportunities for related males, while male dispersal decreases the chances that related females will inbreed. These results meet empirical patterns in mammals: polygynous/promiscuous species usually display a male-biased dispersal, while both sexes disperse in monogamous species. A parallel is drawn with sex-ratio theory, which also predicts biases toward the sex that suffers less from local competition. Optimal sex ratios and optimal sex-specific dispersal show mutual dependence, which argues for the development of coevolution models.
Resumo:
Until recently, the standard treatment for metastatic renal cell carcinoma (RCC) was nonspecific immunotherapy based on interleukin-2 or interferon-α. This was associated with a modest survival benefit and with significant clinical toxicities. The understanding of numerous molecular pathways in RCC, including HIF, VEGF, mTOR, and the consecutive use of targeted therapies since the beginning of 2005 have significantly improved outcomes for patients with metastatic RCC with an overall survival greater than 2 years. At present, at least 7 targeted agents are approved for first and consecutive lines of treatment of clear cell metastatic RCC. Long-term benefit and extended survival may be achieved through the optimal use of targeted therapies: optimal dosing, adverse event management and treatment duration and compliance. Advances in the finding of prognostic factors highlight the potential for personalizing treatment for patients with metastatic RCC. Data regarding the best sequencing of targeted therapies, predictive biomarkers, best timing of surgery, patient risk profiles, understanding of resistance mechanisms and safety of targeted therapies are growing and will provide a further step ahead in the management of advanced RCC. In parallel, a new class of therapeutics is emerging in RCC: immunotherapy; in particular check-point blockade antibodies are showing very promising results.
Resumo:
Research in vitro facilitates discovery, screening, and pilot experiments, often preceding research in vivo. Several technical difficulties render Dendritic Cell (DC) research particularly challenging, including the low frequency of DC in vivo, thorough isolation requirements, and the vulnerability of DC ex vivo. Critically, there is not as yet a widely accepted human or murine DC line and in vitro systems of DC research are limited. In this study, we report the generation of new murine DC lines, named MutuDC, originating from cultures of splenic CD8α conventional DC (cDC) tumors. By direct comparison to normal WT splenic cDC subsets, we describe the phenotypic and functional features of the MutuDC lines and show that they have retained all the major features of their natural counterpart in vivo, the splenic CD8α cDC. These features include expression of surface markers Clec9A, DEC205, and CD24, positive response to TLR3 and TLR9 but not TLR7 stimuli, secretion of cytokines, and chemokines upon activation, as well as cross-presentation capacity. In addition to the close resemblance to normal splenic CD8α cDC, a major advantage is the ease of derivation and maintenance of the MutuDC lines, using standard culture medium and conditions, importantly without adding supplementary growth factors or maturation-inducing stimuli to the medium. Furthermore, genetically modified MutuDC lines have been successfully obtained either by lentiviral transduction or by culture of DC tumors originating from genetically modified mice. In view of the current lack of stable and functional DC lines, these novel murine DC lines have the potential to serve as an important auxiliary tool for DC research.