845 resultados para Pantanal wetlands
Resumo:
The study took place in a sewage treatment plant located at the actual Department of Water and Sewer in Bauru, city of Sao Paulo state. This treatment plant has an average entrance flow of 4.8 l. s-1 made by upflow anaerobic filter, followed by wetland systems constructed in parallel. . As objective of this study we evaluate the effectiveness of three systems of constructed wetlands, with three different types of plants (Lily pond, Giant papyrus and Cattail),quantify, and qualify the effluents at various stages of treatment to monitor their effectiveness and the possibility of reuse in agriculture. There was a satisfactory removal of organic matter, with a mean concentration of 36 and 39mg.l-1 at the , phases 1 and 2 of the operation, respectively. The constructed wetlands effluent nitrogen and phosphate concentrations were high throughout all the system and the removal efficiency of ammonia nitrogen was much lower than expected, then the system is functioning as secondary treatment and not as tertiary treatment. The concentrations of micro-organisms found in the final effluent were also high. Therefore, it is concluded that the results of removal efficiency of organic matter, of constructed wetland systems, meet the parameters required by legislation for effluent discharges but do not attend the parameters required for nitrogen and micro organisms. This way, these analyzed plants effluents are suitable for reuse in agriculture restricted irrigation
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Table of Contents: America’s Birds: In an Alarming State Snakes Alive! Title Sub Title East Coast Wetlands Are Disappearing Chief’s Corner: What We Do Now Extreme Makeover for Bird Sightings by Mike Carlo Taking Care of Our World War II Legacy by Lisa Matlock Whatever Happened to . . . . San Francisco Bay Wetland Restoration Projects Recalling the Battle of Long Island Sound by David Klinger Bold Approaches for Climate Change How Alligator River Refuge Is Planning and Adapting by Mike Bryant Rapid Climate Change Is Transforming the Arctic by David Payer Tracking Change on Wildlife Refuges by Kathy Granillo Where SLAMM Foretells a Wetter Future Reviving the Land – and the Air by Bob Ford and Pete Jerome Connecting the Conservation Landscape a New Priority by Mike Scott and Bob Adamcik Awards for Refuge System Palmyra Atoll Refuge Becomes Ramsar Site Not So Strategic Habitat Conservation: A True Story by David Viker Putting Food on Alaskan Tables by Andy Aderman
Resumo:
Table of Contents: Rebuilding after Hurricane Ike, page 3 Texas and Louisiana refuges were severely damaged in mid-September. A Crane Species Rebounding, page 5 At a Mississippi refuge, the world’s longest-running crane reintroduction program is succeeding. Focus on. . . Refuge System Wetlands, pages 8-13 The Refuge System manages wetlands to enhance their value for migratory waterfowl and shorebirds, threatened and endangered species and a myriad of native fish, wildlife, and plants. Fluttering Close to Extinction, page 17. Antioch Dunes Refuge is out to save the Lange’s metalmark butterfly.
Resumo:
As with many organisms across the globe, Cicindela nevadica lincolniana is threatened with extinction. Understanding ecological factors that contribute to extinction vulnerability and what methods aid in the recovery of those species is essential in developing successful conservation programs. Here we examine behavioral mechanisms for niche partitioning along with improving techniques for captive rearing protocol and increasing public awareness about the conservation of this local insect. Ovipositional selectivity was examined for Cicindela nevadica lincolniana, Cicindela circumpicta, Cicindela togata, Cicindela punctulata, and Cicindela fulgida. Models reflect that these species of co-occurring tiger beetles select different ranges of salinity in which to oviposit thereby reducing the potential for interspecific competition. In a second study, thermoregulatory niche partitioning was examined for the same complex of tiger beetle species. Time spent in the sun, on different substrates, and engaging in various behaviors associated with thermoregulation were significantly different during different parts of the day and between species. I continued along a previous line of study to develop a viable captive rearing program. So far fourteen adult Cicindela nevadica lincolniana have been successfully reared in captivity. Overwintering mortality has been determined as a key factor in the mortality of this species in captivity. Finally, I examined the potential for using the visual arts to promote the conservation of Cicindela nevadica lincolniana and associated saline wetlands. The results from surveys conducted at the exhibit suggest that art exhibits can have a strong positive impact on members of the community.
Resumo:
The wetlands of south-central Nebraska’s Rainwater Basin region are considered of international importance as a habitat for millions of migratory birds, but are being endangered by agricultural practices. The Rainwater Basin extends across 17 counties and covers 4,000 square miles. The purpose of this study was to assemble baseline chemical data for several representative wetlands across the Rainwater Basin region, and determine the use of these chemical data for investigating groundwater recharge. Eight representative wetlands were chosen across the Rainwater Basin to monitor surface and groundwater chemistry. At each site, a shallow well and deep well were installed and sampled once in the summer of 2009 and again in the spring of 2010. Wetland surface water was sampled monthly from April, 2009 to May, 2010. Waters were analyzed for major ions, nutrients, pesticides and oxygen-18 and deuterium isotopes at the University of Nebraska Water Sciences Laboratory. Geochemical analysis of surface waters presents a range of temporal and spatial variations. Wetlands had variable water volumes, isotopic compositions, ion chemistries and agricultural contaminant levels throughout the year and, except for a few trends, theses variations cannot be predicted with certainty year-to-year or wetland-to-wetland. Isotopic compositions showed evaporation was a contributor to water loss, and thus, did impact water chemistry. Surface water nitrate concentrations ranged from <0.10 to 4.04 mg/L. The nitrate levels are much higher in the groundwater, ranging from <0.10 to 18.4 mg/L, and are of concern because they are found above the maximum contaminant level (MCL) of 10 mg/L. Atrazine concentrations in surface waters ranged from <0.05 to 10.3 ppb. Groundwater atrazine concentrations ranged from <0.05 to 0.28 ppb. The high atrazine concentrations in surface waters are of concern as they are above the MCL of 3 ppb, and the highest levels occur during the spring bird migration. Most sampled groundwaters had detectable tritium indicating a mix of modern (<5 to 10 years old) and submodern (older than 1950s) recharge. The groundwater also had differences in chemical and isotope composition, and in some cases, increased nitrate concentrations, between the two sampling periods. Modern groundwater tritium ages and changes in groundwater chemical and isotopic compositions may indicate connections with surface waters in the Rainwater Basin.
Resumo:
Gymnotus tiquie, new species, is described from the Rio Tiquie, a tributary of the Uaupes (Vaupes) in the upper Negro basin, Amazonas, Brazil. The new species was collected in non-floodplain (terra firme) streams, where it occurs sympatrically and syntopically with two geographically widespread congeners, the type species of the genus, G. carapo, and G. coropinae. The new species is diagnosed by a unique combination of morphometric, meristic, and osteological traits, and by a characteristic color pattern in which the dark oblique pigment bands, diverse in shape and design, are divided into band-pairs along the length of the body, in which the band-pairs are often recurved (dorsally concave), more variable, and often reticulated in the abdominal region, and in which the pale inter-bands meet at the dorsal midline along most of the length of the body. Gymnotus tiquie is a member of the G. pantherinus species group, with which it shares the presence of one (vs. two) pore in the dorsolateral portion of the preopercle (except in G. pantanal and G. anguillaris), needle-shaped (vs. conical or arrowhead-shaped) teeth on the dentary and premaxilla, and a slender body (BD 5.6-10.6% HL vs. deep 8.7-13.5%, except G. chaviro, G. curupira, G. varzea, G. chimarrao, G. maculosus, G. henni, and G. inaequilabiatus that also have a slender body). Gymnotus tiquie is most similar in overall appearance to G. cataniapo of the upper Orinoco. These two species share three unique features within the G. pantherinus group: dark band-pairs with wavy irregular margins along the length of the body, a long body cavity with 45 or more pre-caudal vertebrae, and a darkly pigmented membrane in the caudal region of the anal fin.
Resumo:
Risks of the introduction of highly pathogenic avian influenza (HPAI) H5N1 through migratory birds to the main wintering site for wild birds in southern Brazil and its consequences were assessed. Likelihoods were estimated by a qualitative scale ranging from negligible to high. Northern migrants that breed in Alaska and regularly migrate to South America (primary Charadriiformes) can have contact with birds from affected areas in Asia. The likelihood of the introduction of HPAI H5N1 through migratory birds was found to be very low as it is a probability conditioned to successful transmission in breeding areas and the probabilities of an infected bird migrating and shedding the virus as far as southern Brazil. The probability of wild species becoming exposed to H5N1-infected birds is high as they nest with northern migrants from Alaska, whereas for backyard poultry it is moderate to high depending on proximity to wetlands and the presence of species that could increase the likelihood of contact with wild birds such as domestic duck. The magnitude of the biological and economic consequences of successful transmission to poultry or wild birds would be low to severe depending on the probability of the occurrence of outbreak scenarios described. As a result, the risk estimate is greater than negligible, and HPAI H5N1 prevention strategy in the region should always be carefully considered by the veterinary services in Brazil.
Resumo:
Adriano E.A., Ceccarelli P.S., Silva M.R.M. & Maia A.A. M. 2012. [Prevalence, geographic and seasonal distribution of protozoan and myxozoan parasites of jau (Zungaro jahu) in the Pantanal of Mato Grosso, Brazil.] Prevalencia, distribuicao geografica e sazonal de protozoarios e mixozoarios parasitos de jau (Zungaro jahu) no Pantanal Matogrossense. Pesquisa Veterinaria Brasileira 32(12):1341-1344. Departamento de Ciencias Basicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de Sao Paulo, Av. Duque de Caxias Norte 225, Pirassununga, SP 13635-900, Brazil. E-mail: antomaia@usp.br In a study carried out in the Pantanal of Mato Grosso, Brazil, the prevalence, geographic and seasonal distribution of protozoan and myxozoan parasites of Zungaro jahu was evaluated. The fish were captured in the southern region of Pantanal Mato-grossense (Aquidauana, Miranda and Paraguay rivers) in 2001, 2002 and 2003, in the central region (Pantanal National Park - PARNA Pantanal) in 2003, 2004, 2005 and 2008, and in the northern region (Cuiaba and Manso rivers, in the municipality of Nobres) in 2003, 2004 and 2005. Trichodina sp. was identified parasitized skin and gills of jau in the three regions studied. Epistylis sp. parasitized skin and Cryptobia sp. the gills and were restricted to the Central region, whilst Ichthyophthirius multifiliis parasitized skin in the three regions studied. The occurrence of myxozoans was also observed: Myxobolus cordeiroi parasitized several organs and Henneguya sp. parasitized the gills of jau in the three regions studied.
Resumo:
Antagonistic interactions between host plants and mistletoes often form complex networks of interacting species. Adequate characterization of network organization requires a combination of qualitative and quantitative data. Therefore, we assessed the distribution of interactions between mistletoes and hosts in the Brazilian Pantanal and characterized the network structure in relation to nestedness and modularity. Interactions were highly asymmetric, with mistletoes presenting low host specificity (i.e., weak dependence) and with hosts being highly susceptible to mistletoe-specific infections. We found a non-nested and modular pattern of interactions, wherein each mistletoe species interacted with a particular set of host species. Psittacanthus spp. infected more species and individuals and also caused a high number of infections per individual, whereas the other mistletoes showed a more specialized pattern of infection. For this reason, Psittacanthus spp. were regarded as module hubs while the other mistletoe species showed a peripheral role. We hypothesize that this pattern is primarily the result of different seed dispersal systems. Although all mistletoe species in our study are bird dispersed, the frugivorous assemblage of Psittacanthus spp. is composed of a larger suite of birds, whereas Phoradendron are mainly dispersed by Euphonia species. The larger assemblage of bird species dispersing Psittacanthus seeds may also increase the number of hosts colonized and, consequently, its dominance in the study area. Nevertheless, other restrictions on the interactions among species, such as the differential capacity of mistletoe infections, defense strategies of hosts and habitat types, can also generate or enhance the observed pattern.
Resumo:
Oil spills are potential threats to the integrity of highly productive coastal wetlands, such as mangrove forests. In October 1983, a mangrove area of nearly 300 ha located on the southeastern coast of Brazil was impacted by a 3.5 million liter crude oil spill released by a broken pipeline. In order to assess the long-term effects of oil pollution on mangrove vegetation, we carried out a GIS-based multitemporal analysis of aerial photographs of the years 1962, 1994, 2000 and 2003. Photointerpretation, visual classification, class quantification, ground-truth and vegetation structure data were combined to evaluate the oil impact. Before the spill, the mangroves exhibited a homogeneous canopy and well-developed stands. More than ten years after the spill, the mangrove vegetation exhibited three distinct zones reflecting the long-term effects of the oil pollution. The most impacted zone (10.5 ha) presented dead trees, exposed substrate and recovering stands with reduced structural development. We suggest that the distinct impact and recovery zones reflect the spatial variability of oil removal rates in the mangrove forest. This study identifies the multitemporal analysis of aerial photographs as a useful tool for assessing a system's capacity for recovery and monitoring the long-term residual effects of pollutants on vegetation dynamics, thus giving support to mangrove forest management and conservation.
Resumo:
The identification of the factors behind the distribution of plant communities in patched habitats may prove useful towards better understanding how ecosystems function. Plant assemblages are especially important for wetland productivity and provide food and habitat to animals. The present study analyses the distribution of a metacommunity of helophytes and phreatophytes in a wetland complex in oder to identify the effects of habitat configuration on the colonisation process. Ponds with wide vegetated shores and a short distance to a big (> 10 ha) wetland, had higher species richness. The average percentage of surface covered by each species in all the wetlands correlated positively with the number of patches occupied by that species. Moreover, the community presented a nested pattern (species-poor patches were subsets of species-rich patches), and this pattern came about by selective extinction and colonisation processes. We also detected the presence of some idiosyncratic species that did not follow nestedness. Conservation managers should attempt to maximise the vegetated shore width and to reduce the degree of isolation to enhance species richness. Furthermore, a single large and poorly isolated reserve may have the highest level of biodiversity in emergent vegetation species in this wetland complex, however, the particular ecological requirements of idiosyncratic species should also be taken into account when managing this type of community.
Resumo:
In the present study, the presence of tick-associated bacteria and protozoa in Ornithodoros rostratus ticks (adults, nymphs, and eggs) from the Pantanal region of Brazil were determined by molecular detection. In these ticks, DNA from protozoa in the genera Babesia and Hepatozoon, and bacteria from the genera Rickettsia, Borrelia, Anaplasma, and Ehrlichia were not detected. Conversely, all tested ticks (100%) yielded PCR products for 3 Coxiella genes (16S rRNA, pyrG, cap). PCR and phylogenetic analysis of 3 amplified genes (16S rRNA, pyrG, cap) demonstrated that the agent infecting O. rostratus ticks was a member of the genus Coxiella. This organism grouped with Coxiella symbionts of other soft tick species (Argasidae), having different isolates of C. burnetii as a sister group, and these 2 groups formed a clade that grouped with another clade containing Coxiella symbionts of hard tick species (Ixodidae). Analysis of tick mitochondrial 16S rRNA gene database composed mostly of tick species previously shown to harbor Coxiella symbionts suggests a phylogenetic congruence of ticks and their Coxiella symbionts. Furthermore, these results suggest a very long period of coevolution between ticks and Coxiella symbionts and indicates that the original infection may have occurred in an ancestor common to the 2 main tick families, Argasidae (soft ticks) and Ixodidae (hard ticks). However, this evolutionary relationship must be confirmed by more extensive testing of additional tick species and expanded populations. (c) 2012 Elsevier GmbH. All rights reserved.
Resumo:
Extremophiles are organisms adapted to grow at extreme ranges of environmental variables, such as high or low temperatures, acid or alkaline medium, high salt concentration, high pressures and so forth. Most extremophiles are micro-organisms that belong to the Archaea and Bacteria domains, and are widely spread across the world, which include the polar regions, volcanoes, deserts, deep oceanic sediments, hydrothermal vents, hypersaline lakes, acid and alkaline water bodies, and other extreme environments considered hostile to human life. Despite the tropical climate, Brazil has a wide range of ecosystems which include some permanent or seasonally extreme environments. For example, the Cerrado is a biome with very low soil pH with high Al+3 concentration, the mangroves in the Brazilian coast are anaerobic and saline, Pantanal has thousands of alkaline-saline lakes, the Caatinga arid and hot soils and the deep sea sediments in the Brazilian ocean shelf. These environments harbour extremophilic organisms that, coupled with the high natural biodiversity in Brazil, could be explored for different purposes. However, only a few projects in Brazil intended to study the extremophiles. In the frame of astrobiology, for example, these organisms could provide important models for defining the limits of life and hypothesize about life outside Earth. Brazilian microbiologists have, however, studied the extremophilic micro-organisms inhabiting non-Brazilian environments, such as the Antarctic continent. The experience and previous results obtained from the Brazilian Antarctic Program (PROANTAR) provide important results that are directly related to astrobiology. This article is a brief synopsis of the Brazilian experience in researching extremophiles, indicating the most important results related to astrobiology and some future perspectives in this area. Received 29 February 2012, accepted 25 May 2012, first published online 11 July 2012