850 resultados para Pantanal wetland
Resumo:
This study records, for the first time, the occurrence of all four male morphotypes in a population of Macrobrachium amazonicum from a continental environment, with an entirely freshwater life cycle. The specimens studied came from the Tietê River, state of São Paulo, Brazil, and were collected in a lotic environment downstream from Ibitinga Dam. This population was compared with other continental populations, including a population from the dam itself, collected in a previous study. Four samples of 30 minutes were taken monthly, using a trap, from January to April 2011. Each male specimen was measured with respect to seven body dimensions as follows: carapace length (CL), right cheliped length (RCL), dactyl length (DCL), propodus length (PPL), carpus length (CRL), merus length (ML) and ischium length (IL). The relative growth was analyzed based on the change in growth patterns of certain body parts in relation to the independent variable CL. The four male morphotypes proposed for the species were found using morphological and morphometric analyses. Different biological characteristics were found between the populations studied. The male population of the lake of Ibitinga and from Pantanal presented mean sizes and number of morphotypes lower than the population studied here. These differences seem to be closely related to ecological characteristics of the environments inhabited by these populations. Our results supported the hypothesis that coastal and continental populations of M. amazonicum belong to the same species.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The study took place in a sewage treatment plant located at the actual Department of Water and Sewer in Bauru, city of Sao Paulo state. This treatment plant has an average entrance flow of 4.8 l. s-1 made by upflow anaerobic filter, followed by wetland systems constructed in parallel. . As objective of this study we evaluate the effectiveness of three systems of constructed wetlands, with three different types of plants (Lily pond, Giant papyrus and Cattail),quantify, and qualify the effluents at various stages of treatment to monitor their effectiveness and the possibility of reuse in agriculture. There was a satisfactory removal of organic matter, with a mean concentration of 36 and 39mg.l-1 at the , phases 1 and 2 of the operation, respectively. The constructed wetlands effluent nitrogen and phosphate concentrations were high throughout all the system and the removal efficiency of ammonia nitrogen was much lower than expected, then the system is functioning as secondary treatment and not as tertiary treatment. The concentrations of micro-organisms found in the final effluent were also high. Therefore, it is concluded that the results of removal efficiency of organic matter, of constructed wetland systems, meet the parameters required by legislation for effluent discharges but do not attend the parameters required for nitrogen and micro organisms. This way, these analyzed plants effluents are suitable for reuse in agriculture restricted irrigation
Resumo:
Table of Contents: America’s Birds: In an Alarming State Snakes Alive! Title Sub Title East Coast Wetlands Are Disappearing Chief’s Corner: What We Do Now Extreme Makeover for Bird Sightings by Mike Carlo Taking Care of Our World War II Legacy by Lisa Matlock Whatever Happened to . . . . San Francisco Bay Wetland Restoration Projects Recalling the Battle of Long Island Sound by David Klinger Bold Approaches for Climate Change How Alligator River Refuge Is Planning and Adapting by Mike Bryant Rapid Climate Change Is Transforming the Arctic by David Payer Tracking Change on Wildlife Refuges by Kathy Granillo Where SLAMM Foretells a Wetter Future Reviving the Land – and the Air by Bob Ford and Pete Jerome Connecting the Conservation Landscape a New Priority by Mike Scott and Bob Adamcik Awards for Refuge System Palmyra Atoll Refuge Becomes Ramsar Site Not So Strategic Habitat Conservation: A True Story by David Viker Putting Food on Alaskan Tables by Andy Aderman
Resumo:
Wetland ecology is a relatively new field that developed from an initial interest in a few direct benefits that wetlands provide to society. Consequently, much early scientific work was stimulated by economic returns from specific wetland services, such as production of peat and provision of habitat for economically valuable wildlife (e.g., waterfowl and furbearers). Over time, societal interest in wetlands broadened, and these unique habitats are now valued for many additional services, including some that bear non market value. Common examples include carbon sequestration, flood reduction, water purification, and aesthetics. The increased recognition of the importance of wetlands has generated a diversity of job opportunities in wetland ecology and management. Despite the increased knowledge base and enhanced job market, I am not aware of any institutions that offer specialty degrees in this new discipline. Indeed, relatively few institutions offer specific wetland ecology classes, with Arnold G. van der Valk and a few of his peers at other universities being notable exceptions.
Resumo:
The expansion of the cellulosic biofuels industry throughout the United States has broad-scale implications for wildlife management on public and private lands. Knowledge is limited on the effects of reverting agriculture to native grass, and vice versa, on size of home range and habitat use of white-tailed deer (Odocoileus virginianus). We followed 68 radio-collared female deer from 1991 through 2004 that were residents of DeSoto National Wildlife Refuge (DNWR) in eastern Nebraska, USA. The refuge was undergoing conversion of vegetation out of row-crop agriculture and into native grass, forest, and emergent aquatic vegetation. Habitat in DNWR consisted of 30% crop in 1991 but removing crops to establish native grass and wetland habitat at DNWR resulted in a 44% reduction in crops by 2004. A decrease in the amount of crops on DNWR contributed to a decline in mean size of annual home range from 400 ha in 1991 to 200 ha in 2005 but percentage of crops in home ranges increased from 21% to 29%. Mean overlap for individuals was 77% between consecutive annual home ranges across 8 years, regardless of crop availability. Conversion of crop to native habitat will not likely result in home range abandonment but may impact disease transmission by increasing rates of contact between deer social groups that occupy adjacent areas. Future research on condition indices or changes in population parameters (e.g., recruitment) could be incorporated into the study design to assess impacts of habitat conversion for biofuel production.
Resumo:
When Deer Are Too Dear and Elk Are Too Elegant -- Gary W. Witmer, NADCA Regional Director, Southern Rockies Region, Region 2 Understanding Home Range -- Jeff Jackson, Extension Wildlife Specialist, School of Forest Resources, University of Georgia Notes from Nigeria: Wildlife Crop Interactions in Threatened Sahelian Wetland -- Augustine U. Ezealor, Dept. of Biological Sciences, Ahmadu Bello University, Zaria, Nigeria, and Robert H. Giles, Jr., Dept. of Fisheries and Wildlife Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0321. Two Women Animal Rights Activists Protest Prairie Dog Control Rats on the Rise-Urban Wildlife Control Proves to Be Bonanza for Florida Man Wildlife Up Close and Personal for Suburbanites An ADC Story from the Internet Stray Cats Pose Expensive Problem
Resumo:
Gymnotus tiquie, new species, is described from the Rio Tiquie, a tributary of the Uaupes (Vaupes) in the upper Negro basin, Amazonas, Brazil. The new species was collected in non-floodplain (terra firme) streams, where it occurs sympatrically and syntopically with two geographically widespread congeners, the type species of the genus, G. carapo, and G. coropinae. The new species is diagnosed by a unique combination of morphometric, meristic, and osteological traits, and by a characteristic color pattern in which the dark oblique pigment bands, diverse in shape and design, are divided into band-pairs along the length of the body, in which the band-pairs are often recurved (dorsally concave), more variable, and often reticulated in the abdominal region, and in which the pale inter-bands meet at the dorsal midline along most of the length of the body. Gymnotus tiquie is a member of the G. pantherinus species group, with which it shares the presence of one (vs. two) pore in the dorsolateral portion of the preopercle (except in G. pantanal and G. anguillaris), needle-shaped (vs. conical or arrowhead-shaped) teeth on the dentary and premaxilla, and a slender body (BD 5.6-10.6% HL vs. deep 8.7-13.5%, except G. chaviro, G. curupira, G. varzea, G. chimarrao, G. maculosus, G. henni, and G. inaequilabiatus that also have a slender body). Gymnotus tiquie is most similar in overall appearance to G. cataniapo of the upper Orinoco. These two species share three unique features within the G. pantherinus group: dark band-pairs with wavy irregular margins along the length of the body, a long body cavity with 45 or more pre-caudal vertebrae, and a darkly pigmented membrane in the caudal region of the anal fin.
Resumo:
Four sediment cores were sampled from Lake Arari, located on Marajo Island at the mouth of the Amazon River. The island's vegetation cover is composed mainly of Amazon coastal forest, herbaceous and varzea vegetation. The integration of data on sedimentary structures, pollen, carbon and nitrogen isotope records, C/N ratios and radiocarbon ages allowed the identification of changes in vegetation and the sources of organic matter accumulated in the lake during the Holocene. The data indicate a relatively high flow energy, marine water influence and the presence of mangroves during the lagoon phase between 8990 and 8690 cal yr B.P. and 2310-2230 cal yr B.P. Between 2310 and 2230 cal yr B.P. and similar to 1000 cal yr B.P., the flow energy decreased and the mangroves were replaced by herbaceous vegetation following the decline in marine influence, likely due to the increase in freshwater river discharge. During the last 1000 years, Lake Arari was established in association with the expansion of herbaceous vegetation and the dominance of freshwater algae. (C) 2011 Elsevier BM. All rights reserved.
Resumo:
Adriano E.A., Ceccarelli P.S., Silva M.R.M. & Maia A.A. M. 2012. [Prevalence, geographic and seasonal distribution of protozoan and myxozoan parasites of jau (Zungaro jahu) in the Pantanal of Mato Grosso, Brazil.] Prevalencia, distribuicao geografica e sazonal de protozoarios e mixozoarios parasitos de jau (Zungaro jahu) no Pantanal Matogrossense. Pesquisa Veterinaria Brasileira 32(12):1341-1344. Departamento de Ciencias Basicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de Sao Paulo, Av. Duque de Caxias Norte 225, Pirassununga, SP 13635-900, Brazil. E-mail: antomaia@usp.br In a study carried out in the Pantanal of Mato Grosso, Brazil, the prevalence, geographic and seasonal distribution of protozoan and myxozoan parasites of Zungaro jahu was evaluated. The fish were captured in the southern region of Pantanal Mato-grossense (Aquidauana, Miranda and Paraguay rivers) in 2001, 2002 and 2003, in the central region (Pantanal National Park - PARNA Pantanal) in 2003, 2004, 2005 and 2008, and in the northern region (Cuiaba and Manso rivers, in the municipality of Nobres) in 2003, 2004 and 2005. Trichodina sp. was identified parasitized skin and gills of jau in the three regions studied. Epistylis sp. parasitized skin and Cryptobia sp. the gills and were restricted to the Central region, whilst Ichthyophthirius multifiliis parasitized skin in the three regions studied. The occurrence of myxozoans was also observed: Myxobolus cordeiroi parasitized several organs and Henneguya sp. parasitized the gills of jau in the three regions studied.
Resumo:
Antagonistic interactions between host plants and mistletoes often form complex networks of interacting species. Adequate characterization of network organization requires a combination of qualitative and quantitative data. Therefore, we assessed the distribution of interactions between mistletoes and hosts in the Brazilian Pantanal and characterized the network structure in relation to nestedness and modularity. Interactions were highly asymmetric, with mistletoes presenting low host specificity (i.e., weak dependence) and with hosts being highly susceptible to mistletoe-specific infections. We found a non-nested and modular pattern of interactions, wherein each mistletoe species interacted with a particular set of host species. Psittacanthus spp. infected more species and individuals and also caused a high number of infections per individual, whereas the other mistletoes showed a more specialized pattern of infection. For this reason, Psittacanthus spp. were regarded as module hubs while the other mistletoe species showed a peripheral role. We hypothesize that this pattern is primarily the result of different seed dispersal systems. Although all mistletoe species in our study are bird dispersed, the frugivorous assemblage of Psittacanthus spp. is composed of a larger suite of birds, whereas Phoradendron are mainly dispersed by Euphonia species. The larger assemblage of bird species dispersing Psittacanthus seeds may also increase the number of hosts colonized and, consequently, its dominance in the study area. Nevertheless, other restrictions on the interactions among species, such as the differential capacity of mistletoe infections, defense strategies of hosts and habitat types, can also generate or enhance the observed pattern.
Resumo:
Oil spills are potential threats to the integrity of highly productive coastal wetlands, such as mangrove forests. In October 1983, a mangrove area of nearly 300 ha located on the southeastern coast of Brazil was impacted by a 3.5 million liter crude oil spill released by a broken pipeline. In order to assess the long-term effects of oil pollution on mangrove vegetation, we carried out a GIS-based multitemporal analysis of aerial photographs of the years 1962, 1994, 2000 and 2003. Photointerpretation, visual classification, class quantification, ground-truth and vegetation structure data were combined to evaluate the oil impact. Before the spill, the mangroves exhibited a homogeneous canopy and well-developed stands. More than ten years after the spill, the mangrove vegetation exhibited three distinct zones reflecting the long-term effects of the oil pollution. The most impacted zone (10.5 ha) presented dead trees, exposed substrate and recovering stands with reduced structural development. We suggest that the distinct impact and recovery zones reflect the spatial variability of oil removal rates in the mangrove forest. This study identifies the multitemporal analysis of aerial photographs as a useful tool for assessing a system's capacity for recovery and monitoring the long-term residual effects of pollutants on vegetation dynamics, thus giving support to mangrove forest management and conservation.