900 resultados para PURM. Glass powder. Composites. Thermal insulation. Environment


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tin dioxide (SnO2) thin films doped with Eu3+, are deposited by the sol-gel-dip-coating process on top of GaAs films, which is deposited by resistive evaporation on glass substrate. This heterojunction assembly presents luminescence from the rare-earth ion, unlike the SnO2 deposition directly on a glass substrate, where emissions from the Eu3+ transitions are absent. The Eu3+ transitions are clearly identified and are similar to the observation on SnO2 pressed powder (pellets), thermally treated at much higher temperatures. However, in the form of heterojunction films, the Eu emission comes along a broad band, located at higher energy compared to Eu3+ transitions, which is blue-shifted as the thermal annealing temperature increases. The size of nanocrystallites points toward quantum confinement or electron transfer between oxygen vacancies, originated from the disorder in the material, and trivalent rare-earth ions, which present acceptor-like character in this matrix. This electron transfer may relax for higher temperatures in the case of pellets, and the broad band is eliminated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon fiber reinforced carbon composites can be made by iterative liquid impregnation or gas phase carbon deposition routes. In both cases, at the final processing stage the carbon fiber is embedded in carbon matrix which results in unique properties such as low density, high thermal conductivity and thermal shock resistance, low thermal expansion and high modulus, in relation to other refractory materials. In the present study assembled three-directional and four-directional preforms, having 50% volume of pores, were densified by iterative cycles of thermoset resin impregnation followed by pyrolysis under inert atmosphere, until appropriate densities were achieved. The thermoset resin is converted in a carbon matrix during pyrolysis. The iterative manufacturing process of the carbon fiber reinforced carbon composites is evaluated by means of nondestructive techniques based on X-ray computed tomography and electrical resistivity. X-ray computed tomography gives a general mapping view of the filling pores of the preforms which impacts results of the electrical resistivity. After six processing cycles and heat treatments up to 2000?, the final densities of the three-directional and four-directional carbon fiber reinforced carbon composites were 1.16g/cm(3) and an electrical resistivity of approximate to 0.07m. The configuration of preforms, three-directional or four-directional, did not alter the densification profile, in terms of increasing density and reducing porosity during the processing cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal oxidenanocomposites were prepared by two different routes: polyol and sol-gel. Characterization by X ray diffraction showed that the first processproducesdirectly a two-phase material, while the sol-gelpowder never showed second phase below 600 degrees C. Light spectroscopy of the treated powders indicated similarities for the processed materials. Although the overall material compositions are about the same, different structural characteristics are found for each processing. With the exception of Ti-Zn materials, all the double metal oxide powders showed higher absorbance than either TiO2 powder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the study results with glass-ceramics obtained from base glass (MgO-Al2O3- SiO2-Li2O system) with addition of ZrO2 as nucleating agent. The glass was melted at 1650 degrees C for 3 h and at a heating rate of 10 degrees C/min. The molten glass was poured into a graphite mold to obtain monolithic samples and also in water in order to obtain particulate material. Such material was grinded and then pressed by both uniaxial and isostatic pressing methods before being sintered. Both the monolithic and pressed samples were performed under two different conditions of heat treatment so that their nucleation and crystallization occurred. In the first one, the samples were heated to 1100 degrees C with a heating rate of 10 degrees C/min. In the second one, there was an initial heating rate of 10 degrees C/min up to 780 degrees C, which was kept for 5 minutes. After that, the samples were heated to 1100 degrees C at a heating rate of 1 degrees C/min. Microhardness analyses showed that base glass presented values around 7.0 GPa. The glass-ceramics obtained from the powder sintering showed microhardness values lower than those obtained from monolithic samples. The highest hardness values were observed in the samples which were treated with two heating rates, whose values were around 9.2 +/- 0.5 GPa. Moreover, the glass-ceramics which were produced with an only heating rate, presented values around 7.1 +/- 0.2 GPa, very close to those observed in the base glass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bi-Sr-Ca-Cu-O system has been one of the most studied superconducting ceramic materials for industry applications. The most of the studies with this aim are on silver/ceramic composites, due to the benefits and great compatibility of this metal with the oxide. Tapes made by the powder in tube (PIT) method have been successfully tested in pilot power plants in many countries but in Brazil. In this paper, 5, 10, and 20-wt% silver powders are introduced to compose the core of the tape along with the Bi:2212 ceramic powder. The results of electrical experiments are compared with those made with no silver addition Ag tapes. The best current density, at 60 K and no applied magnetic field, was found for the 10-wt% silver proportion, doubling the value obtained for the tape with no silver in the core.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid state Ln-4-Me-BP compounds, where Ln stands for heavier trivalent lanthanides (gadolinium to lutetium) and yttrium(III) and 4-Me-BP is 4-methylbenzylidenepyruvate (CH3-C6H4-CH=CH-COCOO-), have been synthesized. Elemental analysis, complexometry, X-ray powder diffractometry, infrared spectroscopy and simultaneous thermogravimetry-differential thermal analysis (TG-DTA), have been used to characterise and to study the thermal behaviour of these compounds. The results provided information concerning the stoichiometry, crystallinity, ligand's denticity, thermal stability and thermal decomposition. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel porous silica matrix has been prepared from Pyrex glass, using hydrothermal treatment under saturated-steam condition. This process makes it possible to obtain, in one step, a silica support formed of a homogeneously distributed and interconnected macropore microstructure. The new matrix contains silanol groups that can be used in reactions of surface modification to provide a hybrid material and a selective macrofiltration membrane, and also it can improve chemical inertness. The porous matrix is noncrystalline as obtained and, after thermal treatment at temperatures higher than 950degreesC, exhibits an X-ray pattern characteristic of alpha-cristobalite and low volume contraction. The present samples were characterized by scanning electron microscopy, mercury intrusion porosimetry, nitrogen adsorption-desorption isotherms, infrared spectroscopy, X-ray powder diffractometry, atomic absorption, and high-resolution solid-state nuclear magnetic resonance. The results present a new way of producing a macroporous silica matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Latex collected from natural rubber trees forming membranes can be used as biomaterials in several fields being the temperature a key parameter. Thermogravimetry (TG) coupled to Fourier transform infrared spectroscopy (FTIR) is a useful technique to investigate the thermal degradation of both latex and cast films (membranes), wich were obtained from Hevea brasiliensis (RRIM 600 clone) and used without stabilization. The membranes were prepared by casting the latex onto a glass substrate at 65 degrees C for 6 h. The thermal degradation was followed by FTIR spectra acquisition along the process, allowing the identification of the gaseous components evolved upon the thermal treatment. According to TG measurements, the main processes of thermal degradation of the latex and membranes occur at three temperature intervals for both.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid-state LnL(3) compounds, where L is 2-metboxybenzoate and Ln is light trivalent lanthanides, have been synthesized. Thermogravimetry (TG), differential scanning calorimetty (DSC), X-ray powder diffractometry, infrared spectroscopy and elementary analysis were used to characterize and to study the thermal behaviour of these compounds. The results led to information on the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds. on heating these complexes decompose in three (Ce, Pr) or five (La, Nd, Sm) steps with the formation of the respective oxide: CeO2, Pr6O11 and Ln(2)O(3) (Ln=La, Nd, Sm) as final residues. The theoretical and experimental spectroscopic study suggests predominantly the ionic bond between the ligand and metallic center.