851 resultados para PTRU NANOPARTICLES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal and mechanical behaviour of isotactic polypropylene (iPP) nanocomposites reinforced with different loadings of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles was investigated. The IF-WS2 noticeably enhanced the polymer stiffness and strength, ascribed to their uniform dispersion, the formation of a large nanoparticle?matrix interface combined with a nucleating effect on iPP crystallization. Their reinforcement effect was more pronounced at high temperatures. However, a drop in ductility and toughness was found at higher IF-WS2 concentrations. The tensile behaviour of the nanocomposites was extremely sensitive to the strain rate and temperature, and their yield strength was properly described by the Eyring s equation. The activation energy increased while the activation volume decreased with increasing nanoparticle loading, indicating a reduction in polymer chain motion. The nanoparticles improved the thermomechanical properties of iPP: raised the glass transition and heat deflection temperatures while decreased the coefficient of thermal expansion. The nanocomposites also displayed superior flame retardancy with longer ignition time and reduced peak heat release rate. Further, a gradual rise in thermal conductivity was found with increasing IF-WS2 loading both in the glassy and rubbery states. The results presented herein highlight the benefits and high potential of using IF-nanoparticles for enhancing the thermomechanical properties of thermoplastic polymers compared to other nanoscale fillers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reinforcing effect of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles in two different polymer matrices, isotactic polypropylene (iPP) and polyphenylene sulfide (PPS), has been investigated by means of dynamic depth-sensing indentation. The hardness and elastic modulus enhancement upon filler addition is analyzed in terms of two main contributions: changes in the polymer matrix nanostructure and intrinsic properties of the filler including matrix-particle load transfer. It is found that the latter mainly determines the overall mechanical improvement, whereas the nanostructural changes induced in the polymer matrix only contribute to a minor extent. Important differences are suggested between the mechanisms of deformation in the two nanocomposites, resulting in a moderate mechanical enhancement in case of iPP (20% for a filler loading of 1%), and a remarkable hardness increase in case of PPS (60% for the same filler content). The nature of the polymer amorphous phase, whether in the glassy or rubbery state, seems to play here an important role. Finally, nanoindentation and dynamic mechanical analysis measurements are compared and discussed in terms of the different directionality of the stresses applied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer/inorganic nanoparticle nanocomposites have garnered considerable academic and industrial interest over recent decades in the development of advanced materials for a wide range of applications. In this respect, the dispersion of so-called inorganic fullerene-like (IF) nanoparticles, e.g., tungsten disulfide (IF-WS2) or molybdenum disulfide (IF-MoS2), into polymeric matrices is emerging as a new strategy. The surprising properties of these layered metal dichalcogenides such as high impact resistance and superior tribological behavior, attributed to their nanoscale size and hollow quasi-spherical shape, open up a wide variety of opportunities for applications of these inorganic compounds. The present work presents a detailed overview on research in the area of IF-based polymer nanocomposites, with special emphasis on the use of IF-WS2 nanoparticles as environmentally friendly reinforcing fillers. The incorporation of IF particles has been shown to be efficient for improving thermal, mechanical and tribological properties of various thermoplastic polymers, such as polypropylene, nylon-6, poly(phenylene sulfide), poly(ether ether ketone), where nanocomposites were fabricated by simple melt-processing routes without the need for modifiers or surfactants. This new family of nanocomposites exhibits similar or enhanced performance when compared with nanocomposites that incorporate carbon nanotubes, carbon nanofibers or nanoclays, but are substantially more cost-effective, efficient and environmentally satisfactory. Most recently, innovative approaches have been described that exploit synergistic effects to produce new materials with enhanced properties, including the combined use of micro- and nanoparticles such as IF-WS2/nucleating agent or IF-WS2/carbon fiber, as well as dual nanoparticle systems such as SWCNT/IF-WS2 where each nanoparticle has different characteristics. The structure–property relationships of these nanocomposites are discussed and potential applications proposed ranging from medicine to the aerospace, automotive and electronics industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical hyperthermia systems based on the laser irradiation of gold nanorods seem to be a promising tool in the development of therapies against cancer. After a proof of concept in which the authors demonstrated the efficiency of this kind of systems, a modeling process based on an equivalent thermal-electric circuit has been carried out to determine the thermal parameters of the system and an energy balance obtained from the time-dependent heating and cooling temperature curves of the irradiated samples in order to obtain the photothermal transduction efficiency. By knowing this parameter, it is possible to increase the effectiveness of the treatments, thanks to the possibility of predicting the response of the device depending on the working configuration. As an example, the thermal behavior of two different kinds of nanoparticles is compared. The results show that, under identical conditions, the use of PEGylated gold nanorods allows for a more efficient heating compared with bare nanorods, and therefore, it results in a more effective therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 nanoparticles with tailored morphology have been synthesized under exceptionally soft conditions. The strategy is based on the use of a non-aqueous alcoholic reaction medium in which water traces, coming either from the air (atmospheric water) or from an ethanol–water azeotropic mixture (ethanol 96%), are incorporated in order to accelerate hydrolysis of the Ti–precursor. Moreover, organic surfactants have been used as capping agents so as to tailor crystal growth in certain preferential directions. Combinations of oleic acid and oleylamine, which lead to the formation of another surfactant, dioleamide, are employed instead of fluorine-based compounds, thus increasing the sustainability of the process. As a result, TiO2 nanostructured hierarchical microspheres and individual nanoparticles with exposed high-energy facets can be obtained at atmospheric pressure and temperatures as low as 78 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study assessed the uptake and toxicity of ZnO nanoparticles (NPs), ZnO bulk, and ZnCl2 salt in earthworms in spiked agricultural soils. In addition, the toxicity of aqueous extracts to Daphnia magna and Chlorella vulgaris was analyzed to determine the risk of these soils to the aquatic compartment. We then investigated the distribution of Zn in soil fractions to interpret the nature of toxicity. Neither mortality nor differences in earthworm body weight were observed compared with the control. The most sensitive end point was reproduction. ZnCl2 was notably toxic in eliminating the production of cocoons. The effects induced by ZnO-NPs and bulk ZnO on fecundity were similar and lower than those of the salt. In contrast to ZnO bulk, ZnO-NPs adversely affected fertility. The internal concentrations of Zn in earthworms in the NP group were greater than those in the salt and bulk groups, although bioconcentration factors were consistently <1. No relationship was found between toxicity and internal Zn amounts in earthworms. The results from the sequential extraction of soil showed that ZnCl2 displayed the highest availability compared with both ZnO. Zn distribution was consistent with the greatest toxicity showed by the salt but not with Zn body concentrations. The soil extracts from both ZnO-NPs and bulk ZnO did not show effects on aquatic organisms (Daphnia and algae) after short-term exposure. However, ZnCl2 extracts (total and 0.45-μm filtered) were toxic to Daphnia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of singlewalled carbon nanotubes (SWCNT) and inorganic fullerenelike tungsten disulfide nanoparticles (IFWS2) on the morphology and thermal, mechanical and electrical performance of multifunctional fibrereinforced polymer composites has been investigated. Significant improvements were observed in stiffness, strength and toughness in poly (ether ether ketone) (PEEK) / (SWCNT) / glass fibre (GF) laminates when a compatibilizer was used for wrapping the CNTs. Hybrid poly(phenylene sulphide) (PPS)/IFWS2/ carbon fibre (CF) reinforced polymer composites showed improved mechanical and tribological properties attributed to a synergetic effect between the IF nanoparticles and CF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using inorganic fullerene-like (IF) nanoparticles and inorganic nanotubes (INT) in organic-inorganic hybrid composite, materials provide the potential for improving thermal, mechanical, and tribological properties of conventional composites. The processing of such high-performance hybrid thermoplastic polymer nanocomposites is achieved via melt-blending without the aid of any modifier or compatibilizing agent. The incorporation of small quantities (0.1-4 wt.%) of IF/INTs (tungsten disulfide, IF-WS2 or molybdenum disulfide, MoS2) generates notable performance enhancements through reinforcement effects and excellent lubricating ability in comparison with promising carbon nanotubes or other inorganic nanoscale fillers. It was shown that these IF/INT nanocomposites can provide an effective balance between performance, cost effectiveness, and processability, which is of significant importance for extending the practical applications of diverse hierarchical thermoplastic-based composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 nanoparticles (TiO2NPs) prepared by the sol–gel method have been incorporated to cement paste with the aim of creating a photocatalytic system capable of compensating, through degradation of hazardous molecules, the envi- ronmental impact associated to the production of the clinker. Doping was carried out at different mass ratios with TiO2NPs precursor solutions within a fresh ce- ment paste, which was then characterized using scanning electron microscopy (SEM). The photocatalytic performance was evaluated by the degradation of Methylene Blue (MB) using a 125W UV lamp as irradiating source. Main cement properties such as hydration degree and C-S-H content are affected by TiO2NPs doping level. Cement containing TiO2NPs exhibited an increasing photocatalytic activity for increasing doping, while the pure cement paste control could hardly degrade MB. The kinetics of the system where also studied and their second order behavior related to microstructural aspects of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic and thermal properties of TbAl2 nanosized alloys (diameters, 12 nm $\leqslant D\leqslant $ 20 nm) obtained by high-energy milling are characterised by specific heat, magnetisation and neutron scattering. The specific heat shows that the λ-anomaly at Curie temperature vanishes when the milling time reaches 300 h and its field variation shows a broad peak around 70 K disclosing a disordered magnetic state. The thermal variation of magnetization follows a Bloch process with a decrease of the stiffness constant and a faster demagnetisation with a quadratic exponent instead of the bulk ordinary ${T}^{3/2}$-dependence. The magnetic moment reduction in the nanosized alloys follows a 1/D dependence, remarking the role of disordered moment surface. The Rietveld analysis of the neutron diffraction patterns indicates a collinear ferromagnetic structure, with a reduction of the Tb-magnetic moment when decreasing the particle size. The temperature dependent overall magnetic signal of nanoparticles is derived from small-angle neutron scattering. A magnetic nanoparticle structure with an ordered ferromagnetic core and a disordered surface layer is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural state and static and dynamic magnetic properties of TbCu2 nanoparticles are reported produced by mechanical milling under inert atmosphere. The core magnetic structure retains the bulk antiferromagnetic arrangement. The overall interpretation is based on a superantiferromagnetic behavior which at low temperatures coexists with a canting of surface moments and mismatch of antiferromagnetic sublattices of the nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One mechanism of silver resistance in microorganisms is accumulation of the metal ions in the cell. Here, we report on the phenomenon of biosynthesis of silver-based single crystals with well-defined compositions and shapes, such as equilateral triangles and hexagons, in Pseudomonas stutzeri AG259. The crystals were up to 200 nm in size and were often located at the cell poles. Transmission electron microscopy, quantitative energy-dispersive x-ray analysis, and electron diffraction established that the crystals comprise at least three different types, found both in whole cells and thin sections. These Ag-containing crystals are embedded in the organic matrix of the bacteria. Their possible potential as organic-metal composites in thin film and surface coating technology is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work studies the use of various single-walled carbon nanotube (SWCNT) buckypapers as catalyst supports for methanol electro-oxidation in acid media. Buckypapers were obtained by vacuum filtration from pristine and oxidized SWCNT suspensions in different liquid media. Pt–Ru catalysts supported on the buckypapers were prepared by multiple potentiostatic pulses using a diluted solution of Pt and Ru salts (2 mM H2PtCl6 + 2 mM RuCl3) in acid media. The resulting materials were characterized via SEM, TEM, EDX and ICP-OES analysis. Well dispersed rounded nanoparticles between 2 and 15 nm were successfully electrodeposited on the SWCNT buckypapers. The ruthenium content in the bimetallic deposits was between 32 and 48 at. %, while the specific surface areas of the catalysts were in the range of 72–113 m2 g−1. It was found that the solvent used to prepare the SWCNT buckypaper films has a strong influence on the catalyst dispersion, particle size and metal loading. Cyclic voltammetry and chronoamperometry experiments point out that the most active electrodes for methanol electro-oxidation were prepared with the buckypaper supports that were obtained from SWCNT dispersions in N-methyl-pyrrolidone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work carbon supported Pd nanoparticles were prepared and used as electrocatalysts for formic acid electrooxidation fuel cells. The influence of some relevant parameters such as the nominal Pt loading, the Nafion/total solids ratio as well as the Pd loading towards formic acid electrooxidation was evaluated using gold supported catalytic layer electrodes which were prepared using a similar methodology to that employed in the preparation of conventional catalyst coated membranes (CCM). The results obtained show that, for constant Pd loading, the nominal Pd loading and the Nafion percentage on the catalytic layer do not play an important role on the resulting electrocatalytic properties. The main parameter affecting the electrocatalytic activity of the electrodes seems to be the Pd loading, although the resulting activity is not directly proportional to the increased Pd loading. Thus, whereas the Pd loading is multiplied by a factor of 10, the activity is only twice which evidences an important decrease in the Pd utilization. In fact, the results obtained suggest the active layer is the outer one being clearly independent of the catalytic layer thickness. Finally, catalyst coated membranes with Pd catalyst loadings of 0.1, 0.5 and 1.2 mg cm-2 were also tested in a breathing direct formic acid fuel cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biopolymers, such as poly(lactic acid) (PLA), have been proposed as environmentally-friendly alternatives in applications such as food packaging. In this work, silver nanoparticles and thymol were used as active additives in PLA matrices, combining the antibacterial activity of silver with the antioxidant performance of thymol. The combined action of both additives influenced PLA thermal degradation in ternary systems. DSC results showed that the addition of thymol resulted in a clear decrease of the glass transition temperature (Tg) of PLA, suggesting its plasticizing effect in PLA matrices. Slight modifications in mechanical properties of dog-bone bars were also observed after the addition of the active components, especially in the elastic modulus. FESEM analyses showed the good distribution of active additives through the PLA matrix, obtaining homogenous surfaces and highlighting the presence of silver nanoparticles successfully embedded into the bulk matrix. Degradation of these PLA-based nanocomposites with thymol and silver nanoparticles in composting conditions indicated that the inherent biodegradable character of this biopolymer was improved after this modification. The obtained nanocomposites showed suitable properties to be used as biodegradable active-food packaging systems with antioxidant and antimicrobial effects.