892 resultados para PROPORTIONS
Resumo:
Some bioactive secondary metabolites in forage legumes can cause digestive interactions, so that the rumen fermentation pattern of a mixture of forages can differ from the average values of its components. The objective of this study was to investigate the potential role of condensed tannins (CT) on the synergistic effects between one grass species, cocksfoot, and one CT-containing legume species, sainfoin, on in vitro rumen fermentation characteristics. Cocksfoot and sainfoin in different proportions (in g/kg, 1000:0, 750:250, 500:500, 250:750 and 0:1000) were incubated under anaerobic conditions in culture bottles containing buffered rumen fluid from sheep. Incubations were carried out using artificial saliva with and without polyethylene glycol (PEG), which binds and thus inactivates CT. Rumen fermentation parameters describing the degradation and the fate of the energetic and nitrogenous substrates were measured at 3.5 and 24 h. At the early fermentation stage, when the sainfoin level increased from 0 to 1000 g/kg, the ammonia concentration in the medium quadratically decreased from 3.20 to 0.53 mmol/l in absence of PEG (P<0.01) but not in its presence. This result demonstrates that sainfoin CT decreased the rumen degradation of the proteins in the whole mixture, including the proteins in cocksfoot, rather than just the proteins in sainfoin. Interestingly, the total gas and methane productions were lower in mixtures incubated in absence of PEG than in presence of PEG (P<0.001) while no significant PEG effect was observed on digestibility. At the late fermentation stage, a positive quadratic effect on dry matter digestibility was detected without PEG (P<0.05), indicating a synergistic action of cocksfoot plus sainfoin on plant substrate degradation due to CT. The presence of PEG increased gas production (P<0.001) and NH3-N concentration in the medium (P<0.001). Our results suggest that CT could allow a better utilization of plant substrates in mixtures by the rumen ecosystem by improving the partitioning of degraded substrates toward lower gas losses, and decreasing the protein degradation.
Resumo:
There is potential to reduce both operational and embodied greenhouse gas emission from buildings. To date the focus has been on reducing the operational element, although given the urgency of carbon reductions, it may be more beneficial to consider upfront embodied carbon reductions. This paper describes a case study on the whole life carbon cycle of a warehouse building in Swindon, UK. It examines the relationship between embodied carbon (Ec) and operational carbon (Oc), the proportions of Ec from the structural and non-structural elements, carbon benchmarking of the structure, the value of ‘cradle to site’ or ‘cradle to grave’ assessments and the significance of the timing of emissions during the life of the building. The case study indicates that Ec was dominant for the building and that the structure was responsible for more than half of the Ec. Weighting of future emissions appears to be an important factor to consider. The PAS 2050 reduction factors had only a modest effect but weighting to allow for future decarbonisation of the national grid energy supply had a large effect. This suggests that future operational carbon emissions are being overestimated compared to embodied.
Resumo:
This paper presents an assessment of the impacts of climate change on a series of indicators of hydrological regimes across the global domain, using a global hydrological model run with climate scenarios constructed using pattern-scaling from 21 CMIP3 (Coupled Model Intercomparison Project Phase 3) climate models. Changes are compared with natural variability, with a significant change being defined as greater than the standard deviation of the hydrological indicator in the absence of climate change. Under an SRES (Special Report on Emissions Scenarios) A1b emissions scenario, substantial proportions of the land surface (excluding Greenland and Antarctica) would experience significant changes in hydrological behaviour by 2050; under one climate model scenario (Hadley Centre HadCM3), average annual runoff increases significantly over 47% of the land surface and decreases over 36%; only 17% therefore sees no significant change. There is considerable variability between regions, depending largely on projected changes in precipitation. Uncertainty in projected river flow regimes is dominated by variation in the spatial patterns of climate change between climate models (hydrological model uncertainty is not included). There is, however, a strong degree of consistency in the overall magnitude and direction of change. More than two-thirds of climate models project a significant increase in average annual runoff across almost a quarter of the land surface, and a significant decrease over 14%, with considerably higher degrees of consistency in some regions. Most climate models project increases in runoff in Canada and high-latitude eastern Europe and Siberia, and decreases in runoff in central Europe, around the Mediterranean, the Mashriq, central America and Brasil. There is some evidence that projecte change in runoff at the regional scale is not linear with change in global average temperature change. The effects of uncertainty in the rate of future emissions is relatively small
Resumo:
Insect pests that have a root-feeding larval stage often cause the most sustained damage to plants because their attrition remains largely unseen, preventing early diagnosis and treatment. Characterising movement and dispersal patterns of subterranean insects is inherently difficult due to the difficulty in observing their behaviour. Our understanding of dispersal and movement patterns of soil-dwelling insects is therefore limited compared to above ground insect pests and tends to focus on vertical movements within the soil profile or assessments of coarse movement patterns taken from soil core measurements in the field. The objective of this study was to assess how the dispersal behaviour of the clover root weevil (CRW), Sitona lepidus larvae was affected by differing proportions of host (clover) and non-host (grass) plants under different soil water contents (SWC). This was undertaken in experimental mini-swards that allowed us to control plant community structure and soil water content. CRW larval survival was not affected either by white clover content or planting pattern or SWC in either experiment; however, lower clover composition in the sward resulted in CRW larvae dispersing further from where they hatched. Because survival was the same regardless of clover density, the proportion of infested plants was highest in sward boxes with the fewest clover plants (i.e. the low host plant density). Thus, there is potential for clover plants over a larger area to be colonised when the clover content of the sward is low.
Resumo:
We present a well-dated, high-resolution, ~ 45 kyr lake sediment record reflecting regional temperature and precipitation change in the continental interior of the Southern Hemisphere (SH) tropics of South America. The study site is Laguna La Gaiba (LLG), a large lake (95 km2) hydrologically-linked to the Pantanal, an immense, seasonally-flooded basin and the world's largest tropical wetland (135,000 km2). Lake-level changes at LLG are therefore reflective of regional precipitation. We infer past fluctuations in precipitation at this site through changes in: i) pollen-inferred extent of flood-tolerant forest; ii) relative abundance of terra firme humid tropical forest versus seasonally-dry tropical forest pollen types; and iii) proportions of deep- versus shallow-water diatoms. A probabilistic model, based on plant family and genus climatic optima, was used to generate quantitative estimates of past temperature from the fossil pollen data. Our temperature reconstruction demonstrates rising temperature (by 4 °C) at 19.5 kyr BP, synchronous with the onset of deglacial warming in the central Andes, strengthening the evidence that climatic warming in the SH tropics preceded deglacial warming in the Northern Hemisphere (NH) by at least 5 kyr. We provide unequivocal evidence that the climate at LLG was markedly drier during the last glacial period (45.0–12.2 kyr BP) than during the Holocene, contrasting with SH tropical Andean and Atlantic records that demonstrate a strengthening of the South American summer monsoon during the global Last Glacial Maximum (~ 21 kyr BP), in tune with the ~ 20 kyr precession orbital cycle. Holocene climate conditions occurred as early as 12.8–12.2 kyr BP, when increased precipitation in the Pantanal catchment caused heightened flooding and rising lake levels in LLG. In contrast to this strong geographic variation in LGM precipitation across the continent, expansion of tropical dry forest between 10 and 3 kyr BP at LLG strengthens the body of evidence for widespread early–mid Holocene drought across tropical South America.
Resumo:
The research outlined in this paper highlights the importance of the early nutrition of vegetable crops, and its long-term effects on their subsequent growth and development. Results are also presented to demonstrate how the nutrient supply during the establishment stages of young seedlings and transplants can be enhanced by targeting fertiliser to a zone close to their developing roots. Three different precision fertiliser placement techniques are compared for this purpose: starter, band or side-injected fertiliser. The use of each of these methods consistently produced the same (or greater) yields at lower application rates than those from conventional broadcast applications, increasing the apparent recovery of N, P and K, and the overall efficiency of nutrient use, while reducing the levels of residual nutrients in the soil. Starter fertilisers also advanced the maturity of some crops, and enhanced produce quality by increasing the proportions of the larger and/or more desirable marketable grades. The benefits of the different placement techniques are illustrated with selected examples from research at Warwick HRI using different vegetable crops, including lettuce, onion and carrot.
Resumo:
Remotely sensed land cover maps are increasingly used as inputs into environmental simulation models whose outputs inform decisions and policy-making. Risks associated with these decisions are dependent on model output uncertainty, which is in turn affected by the uncertainty of land cover inputs. This article presents a method of quantifying the uncertainty that results from potential mis-classification in remotely sensed land cover maps. In addition to quantifying uncertainty in the classification of individual pixels in the map, we also address the important case where land cover maps have been upscaled to a coarser grid to suit the users’ needs and are reported as proportions of land cover type. The approach is Bayesian and incorporates several layers of modelling but is straightforward to implement. First, we incorporate data in the confusion matrix derived from an independent field survey, and discuss the appropriate way to model such data. Second, we account for spatial correlation in the true land cover map, using the remotely sensed map as a prior. Third, spatial correlation in the mis-classification characteristics is induced by modelling their variance. The result is that we are able to simulate posterior means and variances for individual sites and the entire map using a simple Monte Carlo algorithm. The method is applied to the Land Cover Map 2000 for the region of England and Wales, a map used as an input into a current dynamic carbon flux model.
Resumo:
Genes play an important role in the development of diabetes mellitus. Putative susceptibility genes could be the key to the development of diabetes. Type 1 diabetes mellitus is one of the most common chronic diseases of childhood. A combination of genetic and environmental factors is most likely the cause of Type 1 diabetes. The pathogenetic sequence leading to the selective autoimmune destruction of islet beta-cells and development of Type 1 diabetes involves genetic factors, environmental factors, immune regulation and chemical mediators. Unlike Type 1 diabetes mellitus, Type 2 diabetes is often considered a polygenic disorder with multiple genes located on different chromosomes being associated with this condition. This is further complicated by numerous environmental factors which also contribute to the clinical manifestation of the disorder in genetically predisposed persons. Only a minority of cases of type 2 diabetes are caused by single gene defects such as maturity onset diabetes of the young (MODY), syndrome of insulin resistance (insulin receptor defect) and maternally inherited diabetes and deafness (mitochondrial gene defect). Although Type 2 diabetes mellitus appears in almost epidemic proportions our knowledge of the mechanism of this disease is limited. More information about insulin secretion and action and the genetic variability of the various factors involved will contribute to better understanding and classification of this group of diseases. This article discusses the results of various genetic studies on diabetes with special reference to Indian population.
Resumo:
This article reports the results of an experiment that examined how demand aggregators can discipline vertically-integrated firms - generator and distributor-retailer holdings-, which have a high share in wholesale electricity market with uniform price double auction (UPDA). We initially develop a treatment where holding members redistribute the profit based on the imposition of supra-competitive prices, in equal proportions (50%-50%). Subsequently, we introduce a vertical disintegration (unbundling) treatment with holding-s information sharing, where profits are distributed according to market outcomes. Finally, a third treatment is performed to introduce two active demand aggregators, with flexible interruptible loads in real time. We found that the introduction of responsive demand aggregators neutralizes the power market and increases market efficiency, even beyond what is achieved through vertical disintegration.
Resumo:
Abstract BACKGROUND Tannins can bind to and precipitate protein by forming insoluble complexes resistant to fermentation and with a positive effect on protein utilisation by ruminants. Three protein types, Rubisco, rapeseed protein and bovine serum albumin (a single high-molecular weight protein), were used to test the effects of increasing concentrations of structurally different condensed tannins on protein solubility/precipitation. RESULTS Protein type (PT) influenced solubility after addition of condensed tannins (P < 0.001) in the order: Rubisco < rapeseed < BSA (P < 0.05). The type of condensed tannin (CT) affected protein solubility (P = 0.001) with a CT × PT interaction (P = 0.001). Mean degree of polymerisation, proportions of cis- versus trans-flavanol subunits or prodelphinidins versus procyanidins among CTs could not explain precipitation capacities. Increasing tannin concentration decreased protein solubility (P < 0.001) with a PT × CT concentration interaction. The proportion of low-molecular weight rapeseed proteins remaining in solution increased with CT concentration but not with Rubisco. CONCLUSIONS Results of this study suggest that PT and CT type are both of importance for protein precipitation but that the CT structures investigated did not allow identification of parameters that contribute most to precipitation. It is possible that the three-dimensional structures of tannins and proteins may be more important factors in tannin–protein interactions. © 2013 Society of Chemical Industry
Resumo:
In vitro studies found that inclusion of dried stinging nettle (Urtica dioica) at 100 mg/g dry matter (DM) increased the pH of a rumen fluid inoculated fermentation buffer by 30% and the effect was persistent for 7 days. Our objective was to evaluate the effects of adding stinging nettle haylage to a total mixed ration on feed intake, eating and rumination activity, rumen pH, milk yield, and milk composition of lactating dairy cows. Six lactating Holstein-Friesian cows were used in a replicated 3 × 3 Latin Square design experiment with 3 treatments and 3 week periods. Treatments were a control (C) high-starch (311 g/kg DM) total mixed ration diet and two treatment diets containing 50 (N5) and 100 (N10) g nettle haylage (DM/kg) as a replacement for ryegrass silage (Lolium perenne). There was an increase (linear, P < 0.010) in the proportion of large particles and a reduction in medium (linear, P = 0.045) and fine particles (linear, P = 0.026) in the diet offered with increasing nettle inclusion. A numerical decrease (linear, P = 0.106) in DM intake (DMI) was observed as nettle inclusion in the diet increased. Milk yield averaged 20.3 kg/day and was not affected by diet. There was a decrease (quadratic, P = 0.01) in the time animals spent ruminating as nettle inclusion in the diet increased, in spite of an increase in the number of boli produced daily for the N5 diet (quadratic, P = 0.031). Animals fed the N10 diet spent less time with a rumen pH below 5.5 (P < 0.05) than cows fed the N5 diet. Averaged over an 8.5 h sampling period, there were no changes in the concentration or proportions of acetate or propionate in the rumen, but feeding nettle haylage reduced the concentrations of n-butyrate (quadratic, P < 0.001), i-butyrate (linear, P < 0.009) and n-caproate (linear, P < 0.003). Milk and fat and protein corrected milk yield were not affected when nettles replaced ryegrass silage in the diet of lactating dairy cows, despite a numerical reduction in feed intake. Rumination activity was reduced by the addition of nettle haylage to the diet, which may reflect differences in fibre structure between the nettle haylage and ryegrass silage fed. Changes observed in rumen pH suggest potential benefits of feeding nettle haylage for reducing rumen acidosis. However, the extent to which these effects were due to the fermentability and structure of the nettle haylage compared to the ryegrass silage fed, or a bioactive component of the nettles, is not certain
Resumo:
Objective: To determine the prevalence of occult hearing loss in elderly inpatients, to evaluate feasibility of opportunistic hearing screening and to determine subsequent provision of hearing aids. Materials and methods: Subjects (>65 years) were recruited from five elderly care wards. Hearing loss was detected by a ward-based hearing screen comprising patient-reported assessment of hearing disability and a whisper test. Subjects failing the whisper test or reporting hearing difficulties were offered formal audiological assessment. Results: Screening was performed on 51 patients aged between 70 and 95 years. Of the patients, 21 (41%) reported hearing loss and 16 (31%) failed the whisper test. A total of 37 patients (73%) were referred for audiological assessment with 17 (33%) found to have aidable hearing loss and 11 were fitted with hearing aids (22%). Discussion: This study highlights the high prevalence of occult hearing loss in elderly inpatients. Easy two-step screening can accurately identify patients with undiagnosed deafness resulting in significant proportions receiving hearing aids.
Resumo:
The recommendation to reduce saturated fatty acid (SFA) consumption to ≤10% of total energy (%TE) is a key public health target aimed at lowering cardiovascular disease (CVD) risk. Replacement of SFA with unsaturated fats may provide greater benefit than replacement with carbohydrates, yet the optimal type of fat is unclear. The aim was to develop a flexible food-exchange model to investigate the effects of substituting SFAs with monounsaturated fatty acids (MUFAs) or n-6 (ω-6) polyunsaturated fatty acids (PUFAs) on CVD risk factors. In this parallel study, UK adults aged 21-60 y with moderate CVD risk (50% greater than the population mean) were identified using a risk assessment tool (n = 195; 56% females). Three 16-wk isoenergetic diets of specific fatty acid (FA) composition (%TE SFA:%TE MUFA:%TE n-6 PUFA) were designed using spreads, oils, dairy products, and snacks as follows: 1) SFA-rich diet (17:11:4; n = 65); 2) MUFA-rich diet (9:19:4; n = 64); and 3) n-6 PUFA-rich diet (9:13:10; n = 66). Each diet provided 36%TE total fat. Dietary targets were broadly met for all intervention groups, reaching 17.6 ± 0.4%TE SFA, 18.5 ± 0.3%TE MUFA, and 10.4 ± 0.3%TE n-6 PUFA in the respective diets, with significant overall diet effects for the changes in SFA, MUFA, and n-6 PUFA between groups (P < 0.001). There were no differences in the changes of total fat, protein, carbohydrate, and alcohol intake or anthropometric measures between groups. Plasma phospholipid FA composition showed changes from baseline in the proportions of total SFA, MUFA, and n-6 PUFA for each diet group, with significant overall diet effects for total SFA and MUFA between groups (P < 0.001). In conclusion, successful implementation of the food-exchange model broadly achieved the dietary target intakes for the exchange of SFA with MUFA or n-6 PUFA with minimal disruption to the overall diet in a free-living population. This trial was registered at clinicaltrials.gov as NCT01478958.
Resumo:
A 19 cal ka BP pollen and charcoal record from Lake Shaman (44°S; 71°W, Chile) was analyzed to establish vegetation, fire and climate dynamics of the forest-steppe ecotone in Central Chilean Patagonia. Lake Shaman record indicates that the upper Río Cisnes valley was free of ice at around 19 cal ka BP. From this date and until 14.8 cal ka BP, a grass steppe with high proportions of shrubs associated to colder and drier conditions than present developed in this area. A continuous increase of Nothofagus accompanied by a decline in the steppe shrubs and sudden dominance of paludal over aquatic plants from 11 cal ka BP was associated to effective moisture increase but still under modern values. The replacement of the cold-dry grass-shrub steppe by a similar-than-present forest-steppe ecotone suggests an increase in temperature indicating the onset of the Holocene. At the same time, moderate fire activity suggested by the charcoal record could be related to major fuel availability as consequence of Nothofagus forest expansion. Between 8 and 3 cal ka BP, the record indicates the easternmost position of the forest-steppe ecotone suggesting the highest effective moisture with the establishment of seasonality between 5 and 3 cal ka BP. From 3 cal ka BP, the record indicates a retraction of the forest-steppe ecotone accompanied by a high pollen record variability and an increased fire activity. These late changes suggest decreased effective moisture associated with a high climatic variability. At regional and extra-regional scale, climatic changes at Lake Shaman's record are mostly associated to changes (latitudinal shifts and/or strengthening/weakening) of past Southern Westerlies that were previously recorded along Patagonia from the Lateglacial to the mid-Holocene. During the Late Holocene, a regional pattern characterized by high record variability emerges throughout Central Chilean Patagonia. This variability would be related to (1) low magnitude Southern Westerlies changes probably associated to ENSO and/or SAM or (2) the complex relationships between vegetation, fire and human occupations during the last 3 cal ka.
Resumo:
Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape.