884 resultados para PRIMARY SOURCE ANALYSIS
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae are major health problems worldwide, both found in symptomless carriage but also causing even life-threatening infections. The aim of this thesis was to characterise MRSA and S. pneumoniae in detail by using several molecular typing methods for various epidemiological purposes: clonality analysis, epidemiological surveillance, outbreak investigation, and virulence factor analysis. The characteristics of MRSA isolates from the strain collection of the Finnish National Infectious Disease Register (NIDR) and pneumococcal isolates collected from military recruits and children with acute otitis media (AOM) were analysed using various typing techniques. Antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), spa typing, staphylococcal cassette chromosome mec (SCCmec) typing, and the detection of Panton-Valentine leukocidin (PVL) genes were performed for MRSA isolates. Pneumococcal isolates were analysed using antimicrobial susceptibility testing, serotyping, MLST, and by detecting pilus islet 1 (PI-1) and 2 (PI-2) genes. Several international community- and hospital-associated MRSA clones were recognised in Finland. The genetic diversity among MRSA FIN-4 isolates and among FIN-16 isolates was low. Overall, MRSA blood isolates from 1997 to 2006 were genetically diverse. spa typing was found to be a highly discriminatory, rapid and accurate typing method and it also qualifies as the primary typing method in countries with a long history of PFGE-based MRSA strain nomenclature. However, additional typing by another method, e.g. PFGE, is needed in certain situations to be able to provide adequate discrimination for epidemiological surveillance and outbreak investigation. An outbreak of pneumonia was associated with one pneumococcal strain among military recruits, previously healthy young men living in a crowded setting. The pneumococcal carriage rate after the outbreak was found to be exceptionally high. PI-1 genes were detected at a rather low prevalence among pneumococcal isolates from children with AOM. However, the study demonstrated that PI-1 has existed among pneumococcal isolates prior to pneumococcal conjugate vaccine and the increased antimicrobial resistance era. Moreover, PI-1 was found to associate with the serotype rather than the genotype. This study adds to our understanding of the molecular epidemiology of MRSA strains in Finland and the importance of an appropriate genotyping method to be able to perform high-level laboratory-based surveillance of MRSA. Epidemiological and molecular analyses of S. pneumoniae add to our knowledge of the characteristics of pneumococcal strains in Finland.
Resumo:
We propose a novel formulation of the points-to analysis as a system of linear equations. With this, the efficiency of the points-to analysis can be significantly improved by leveraging the advances in solution procedures for solving the systems of linear equations. However, such a formulation is non-trivial and becomes challenging due to various facts, namely, multiple pointer indirections, address-of operators and multiple assignments to the same variable. Further, the problem is exacerbated by the need to keep the transformed equations linear. Despite this, we successfully model all the pointer operations. We propose a novel inclusion-based context-sensitive points-to analysis algorithm based on prime factorization, which can model all the pointer operations. Experimental evaluation on SPEC 2000 benchmarks and two large open source programs reveals that our approach is competitive to the state-of-the-art algorithms. With an average memory requirement of mere 21MB, our context-sensitive points-to analysis algorithm analyzes each benchmark in 55 seconds on an average.
Resumo:
The source localization algorithms in the earlier works, mostly used non-planar arrays. If we consider scenarios like human-computer communication, or human-television communication where the microphones need to be placed on the computer monitor or television front panel, i.e we need to use the planar arrays. The algorithm proposed in 1], is a Linear Closed Form source localization algorithm (LCF algorithm) which is based on Time Difference of Arrivals (TDOAs) that are obtained from the data collected using the microphones. It assumes non-planar arrays. The LCF algorithm is applied to planar arrays in the current work. The relationship between the error in the source location estimate and the perturbation in the TDOAs is derived using first order perturbation analysis and validated using simulations. If the TDOAs are erroneous, both the coefficient matrix and the data matrix used for obtaining source location will be perturbed. So, the Total least squares solution for source localization is proposed in the current work. The sensitivity analysis of the source localization algorithm for planar arrays and non-planar arrays is done by introducing perturbation in the TDOAs and the microphone locations. It is shown that the error in the source location estimate is less when we use planar array instead of the particular non-planar array considered for same perturbation in the TDOAs or microphone location. The location of the reference microphone is proved to be important for getting an accurate source location estimate if we are using the LCF algorithm.
Resumo:
The effect of using a spatially smoothed forward-backward covariance matrix on the performance of weighted eigen-based state space methods/ESPRIT, and weighted MUSIC for direction-of-arrival (DOA) estimation is analyzed. Expressions for the mean-squared error in the estimates of the signal zeros and the DOA estimates, along with some general properties of the estimates and optimal weighting matrices, are derived. A key result is that optimally weighted MUSIC and weighted state-space methods/ESPRIT have identical asymptotic performance. Moreover, by properly choosing the number of subarrays, the performance of unweighted state space methods can be significantly improved. It is also shown that the mean-squared error in the DOA estimates is independent of the exact distribution of the source amplitudes. This results in a unified framework for dealing with DOA estimation using a uniformly spaced linear sensor array and the time series frequency estimation problems.
Resumo:
Reactions of hexachlorocyclodiphosphazane [MeNPCl3]2 with primary aromatic amines afforded the bisphosphinimine hydrochlorides [(RNH)2(RN)PN(Me)P(NHMe)(NHR)2]+Cl- (R = Ph 1, C6H4Me-4 2 or C6H4OMe-4 3). Dehydrochlorination of 2 and 3 by methanolic KOH yielded highly basic bisphosphinimines [(RNH)2(RN)PN(Me)P(NMe)(NHR)2] (R = C6H4Me-4 4 or C6H4OMe-4 5). Compounds 1-5 have been characterised by elemental analysis and IR and NMR (H-1, C-13, P-31) spectroscopy. The structure of 2 has been confirmed by single-crystal X-ray diffraction. The short P-N bond lengths and the conformations of the PN, units can be explained on the basis of cumulative negative hyperconjugative interactions between nitrogen lone pairs and adjacent P-N sigma* orbitals. Ab initio calculations on the model phosphinimine (H2N)3P=NH and its protonated form suggest that (amino)phosphinimines would be stronger bases compared to many organic bases such as guanidine.
Resumo:
An analysis of the primary degradation products of the widely used commercial polysulfide polymer Thiokol LP-33 by direct pyrolysis-mass spectrometry (DP-MS) is reported. The mechanism of degradation is through a radical process involving the random cleavage of a formal C-O bond followed by backbiting to form the cyclic products.
Resumo:
A new postcracking formulation for concrete, along with both implicit and explicit layering procedures, is used in the analysis of reinforced-concrete (RC) flexural and torsional elements. The postcracking formulation accounts for tension stiffening in concrete along the rebar directions, compression softening in cracked concrete based on either stresses or strains, and aggregate interlock based on crack-confining normal stresses. Transverse shear stresses computed using the layering procedures are included in material model considerations that permit the development of inclined cracks through the RC cross section. Examples of a beam analyzed by both the layering techniques, a torsional element, and a column-slab connection region analyzed by the implicit layering procedure are presented here. The study highlights the primary advantages and disadvantages of each layering approach, identifying the class of problems where the application of either procedure is more suitable.
Resumo:
An intelligent computer aided defect analysis (ICADA) system, based on artificial intelligence techniques, has been developed to identify design, process or material parameters which could be responsible for the occurrence of defective castings in a manufacturing campaign. The data on defective castings for a particular time frame, which is an input to the ICADA system, has been analysed. It was observed that a large proportion, i.e. 50-80% of all the defective castings produced in a foundry, have two, three or four types of defects occurring above a threshold proportion, say 10%. Also, a large number of defect types are either not found at all or found in a very small proportion, with a threshold value below 2%. An important feature of the ICADA system is the recognition of this pattern in the analysis. Thirty casting defect types and a large number of causes numbering between 50 and 70 for each, as identified in the AFS analysis of casting defects-the standard reference source for a casting process-constituted the foundation for building the knowledge base. Scientific rationale underlying the formation of a defect during the casting process was identified and 38 metacauses were coded. Process, material and design parameters which contribute to the metacauses were systematically examined and 112 were identified as rootcauses. The interconnections between defects, metacauses and rootcauses were represented as a three tier structured graph and the handling of uncertainty in the occurrence of events such as defects, metacauses and rootcauses was achieved by Bayesian analysis. The hill climbing search technique, associated with forward reasoning, was employed to recognize one or several root causes.
Resumo:
This paper presents a new approach to the power flow analysis in steady state for multiterminal DC-AC systems. A flexible and practical choice of per unit system is used to formulate the DC network and converter equations. A converter is represented by Norton's equivalent of a current source in parallel with the commutation resistance. Unlike in previous literature, the DC network equations are used to derive the controller equations for the DC system using a subset of specifications. The specifications considered are current or power at all terminals except the slack terminal where the DC voltage is specified. The control equations are solved by Newton's method, using the current injections at the converter terminals as state variables. Further, a systematic approach to the handling of constraints is proposed by identifying the priorities in rescheduling of the specified variables. The methodology is illustrated by example of a 5 terminal DC system.
Resumo:
The complete amino acid sequence of a cytotoxin-like basic protein (CLBP) from the venom of Naja naja naja (Indian Cobra) was determined by manual degradation using a 4-dimethylaminoazobenzene-4'-isothiocyanate double-coupling method. Peptide fragments obtained by chemical cleavage with cyanogen bromide and enzymic cleavages with trypsin and Staphylococcus aureus proteases for sequence analysis were purified by reversed-phase chromatography. The total number of amino acid residues was 61, with leucine as the C-terminal residue. (C) Munksgaard 1995.
Resumo:
The evolutionary diversity of the HSP70 gene family at the genetic level has generated complex structural variations leading to altered functional specificity and mode of regulation in different cellular compartments. By utilizing Saccharomyces cerevisiae as a model system for better understanding the global functional cooperativity between Hsp70 paralogs, we have dissected the differences in functional properties at the biochemical level between mitochondrial heat shock protein 70 (mtHsp70) Ssc1 and an uncharacterized Ssc3 paralog. Based on the evolutionary origin of Ssc3 and a high degree of sequence homology with Ssc1, it has been proposed that both have a close functional overlap in the mitochondrial matrix. Surprisingly, our results demonstrate that there is no functional cross-talk between Ssc1 and Ssc3 paralogs. The lack of in vivo functional overlap is due to altered conformation and significant lower stability associated with Ssc3. The substrate-binding domain of Ssc3 showed poor affinity toward mitochondrial client proteins and Tim44 due to the open conformation in ADP-bound state. In addition to that, the nucleotide-binding domain of Ssc3 showed an altered regulation by the Mge1 co-chaperone due to a high degree of conformational plasticity, which strongly promotes aggregation. Besides, Ssc3 possesses a dysfunctional inter-domain interface thus rendering it unable to perform functions similar to generic Hsp70s. Moreover, we have identified the critical amino acid sequence of Ssc1 and Ssc3 that can ``make or break'' mtHsp70 chaperone function. Together, our analysis provides the first evidence to show that the nucleotide-binding domain of mtHsp70s plays a critical role in determining the functional specificity among paralogs and orthologs across kingdoms.
Resumo:
Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH) proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly) protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.
Resumo:
The tendency of granular materials in rapid shear flow to form non-uniform structures is well documented in the literature. Through a linear stability analysis of the solution of continuum equations for rapid shear flow of a uniform granular material, performed by Savage (1992) and others subsequently, it has been shown that an infinite plane shearing motion may be unstable in the Lyapunov sense, provided the mean volume fraction of particles is above a critical value. This instability leads to the formation of alternating layers of high and low particle concentrations oriented parallel to the plane of shear. Computer simulations, on the other hand, reveal that non-uniform structures are possible even when the mean volume fraction of particles is small. In the present study, we have examined the structure of fully developed layered solutions, by making use of numerical continuation techniques and bifurcation theory. It is shown that the continuum equations do predict the existence of layered solutions of high amplitude even when the uniform state is linearly stable. An analysis of the effect of bounding walls on the bifurcation structure reveals that the nature of the wall boundary conditions plays a pivotal role in selecting that branch of non-uniform solutions which emerges as the primary branch. This demonstrates unequivocally that the results on the stability of bounded shear how of granular materials presented previously by Wang et al. (1996) are, in general, based on erroneous base states.
Resumo:
This paper is on the design and performance analysis of practical distributed space-time codes for wireless relay networks with multiple antennas terminals. The amplify-andforward scheme is used in a way that each relay transmits a scaled version of the linear combination of the received symbols. We propose distributed generalized quasi-orthogonal space-time codes which are distributed among the source antennas and relays, and valid for any number of relays. Assuming M-PSK and M-QAM signals, we derive a formula for the symbol error probability of the investigated scheme over Rayleigh fading channels. For sufficiently large SNR, this paper derives closed-form average SER expression. The simplicity of the asymptotic results provides valuable insights into the performance of cooperative networks and suggests means of optimizing them. Our analytical results have been confirmed by simulation results, using full-rate full-diversity distributed codes.
Resumo:
The cis-regulatory regions on DNA serve as binding sites for proteins such as transcription factors and RNA polymerase. The combinatorial interaction of these proteins plays a crucial role in transcription initiation, which is an important point of control in the regulation of gene expression. We present here an analysis of the performance of an in silico method for predicting cis-regulatory regions in the plant genomes of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) on the basis of free energy of DNA melting. For protein-coding genes, we achieve recall and precision of 96% and 42% for Arabidopsis and 97% and 31% for rice, respectively. For noncoding RNA genes, the program gives recall and precision of 94% and 75% for Arabidopsis and 95% and 90% for rice, respectively. Moreover, 96% of the false-positive predictions were located in noncoding regions of primary transcripts, out of which 20% were found in the first intron alone, indicating possible regulatory roles. The predictions for orthologous genes from the two genomes showed a good correlation with respect to prediction scores and promoter organization. Comparison of our results with an existing program for promoter prediction in plant genomes indicates that our method shows improved prediction capability.