923 resultados para PRECIPITATE PHASES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since its initial proposal in 1998, alkaline hydrothermal processing has rapidly become an established technology for the production of titanate nanostructures. This simple, highly reproducible process has gained a strong research following since its conception. However, complete understanding and elucidation of nanostructure phase and formation have not yet been achieved. Without fully understanding phase, formation, and other important competing effects of the synthesis parameters on the final structure, the maximum potential of these nanostructures cannot be obtained. Therefore this study examined the influence of synthesis parameters on the formation of titanate nanostructures produced by alkaline hydrothermal treatment. The parameters included alkaline concentration, hydrothermal temperature, the precursor material‘s crystallite size and also the phase of the titanium dioxide precursor (TiO2, or titania). The nanostructure‘s phase and morphology was analysed using X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy. X-ray photoelectron spectroscopy (XPS), dynamic light scattering (non-invasive backscattering), nitrogen sorption, and Rietveld analysis were used to determine phase, for particle sizing, surface area determinations, and establishing phase concentrations, respectively. This project rigorously examined the effect of alkaline concentration and hydrothermal temperature on three commercially sourced and two self-prepared TiO2 powders. These precursors consisted of both pure- or mixed-phase anatase and rutile polymorphs, and were selected to cover a range of phase concentrations and crystallite sizes. Typically, these precursors were treated with 5–10 M sodium hydroxide (NaOH) solutions at temperatures between 100–220 °C. Both nanotube and nanoribbon morphologies could be produced depending on the combination of these hydrothermal conditions. Both titania and titanate phases are comprised of TiO6 units which are assembled in different combinations. The arrangement of these atoms affects the binding energy between the Ti–O bonds. Raman spectroscopy and XPS were therefore employed in a preliminary study of phase determination for these materials. The change in binding energy from a titania to a titanate binding energy was investigated in this study, and the transformation of titania precursor into nanotubes and titanate nanoribbons was directly observed by these methods. Evaluation of the Raman and XPS results indicated a strengthening in the binding energies of both the Ti (2p3/2) and O (1s) bands which correlated to an increase in strength and decrease in resolution of the characteristic nanotube doublet observed between 320 and 220 cm.1 in the Raman spectra of these products. The effect of phase and crystallite size on nanotube formation was examined over a series of temperatures (100.200 �‹C in 20 �‹C increments) at a set alkaline concentration (7.5 M NaOH). These parameters were investigated by employing both pure- and mixed- phase precursors of anatase and rutile. This study indicated that both the crystallite size and phase affect nanotube formation, with rutile requiring a greater driving force (essentially �\harsher. hydrothermal conditions) than anatase to form nanotubes, where larger crystallites forms of the precursor also appeared to impede nanotube formation slightly. These parameters were further examined in later studies. The influence of alkaline concentration and hydrothermal temperature were systematically examined for the transformation of Degussa P25 into nanotubes and nanoribbons, and exact conditions for nanostructure synthesis were determined. Correlation of these data sets resulted in the construction of a morphological phase diagram, which is an effective reference for nanostructure formation. This morphological phase diagram effectively provides a .recipe book�e for the formation of titanate nanostructures. Morphological phase diagrams were also constructed for larger, near phase-pure anatase and rutile precursors, to further investigate the influence of hydrothermal reaction parameters on the formation of titanate nanotubes and nanoribbons. The effects of alkaline concentration, hydrothermal temperature, crystallite phase and size are observed when the three morphological phase diagrams are compared. Through the analysis of these results it was determined that alkaline concentration and hydrothermal temperature affect nanotube and nanoribbon formation independently through a complex relationship, where nanotubes are primarily affected by temperature, whilst nanoribbons are strongly influenced by alkaline concentration. Crystallite size and phase also affected the nanostructure formation. Smaller precursor crystallites formed nanostructures at reduced hydrothermal temperature, and rutile displayed a slower rate of precursor consumption compared to anatase, with incomplete conversion observed for most hydrothermal conditions. The incomplete conversion of rutile into nanotubes was examined in detail in the final study. This study selectively examined the kinetics of precursor dissolution in order to understand why rutile incompletely converted. This was achieved by selecting a single hydrothermal condition (9 M NaOH, 160 °C) where nanotubes are known to form from both anatase and rutile, where the synthesis was quenched after 2, 4, 8, 16 and 32 hours. The influence of precursor phase on nanostructure formation was explicitly determined to be due to different dissolution kinetics; where anatase exhibited zero-order dissolution and rutile second-order. This difference in kinetic order cannot be simply explained by the variation in crystallite size, as the inherent surface areas of the two precursors were determined to have first-order relationships with time. Therefore, the crystallite size (and inherent surface area) does not affect the overall kinetic order of dissolution; rather, it determines the rate of reaction. Finally, nanostructure formation was found to be controlled by the availability of dissolved titanium (Ti4+) species in solution, which is mediated by the dissolution kinetics of the precursor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Becoming a Teacher is structured in five very readable sections. The introductory section addresses the nature of teaching and the importance of developing a sense of purpose for teaching in a 21st century classroom. It also introduces some key concepts that are explored throughout the volume according to the particular chapter focus of each part. For example, the chapters in Part 2 explore aspects of student learning and the learning environment and focus on how students develop and learn, learner motivation, developing self esteem and learning environments. The concepts developed in this section, such as human development, stages of learning, motivation, and self-concept are contextualised in terms of theories of cognitive development and theories of social, emotional and moral development. The author, Colin Marsh, draws on his extensive experience as an educator to structure the narrative of chapters in this part via checklists for observation, summary tables, sample strategies for teaching at specific stages of student development, and questions under the heading ‘your turn’. Case studies such as ‘How I use Piaget in my teaching’ make that essential link between theory and practice, something which pre-service teachers struggle with in the early phases of their university course. I was pleased to see that Marsh also explores the contentious and debated aspects of these theoretical frameworks to demonstrate that pre-service teachers must engage with and critique the ways in which theories about teaching and learning are applied. Marsh weaves in key quotations and important references into each chapter’s narrative and concludes every chapter with summary comments, reflection activities, lists of important references and useful web sources. As one would expect of a book published in 2008, Becoming a Teacher is informed by the most recent reports of classroom practice, current policy initiatives and research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human knee acts as a sophisticated shock absorber during landing movements. The ability of the knee to perform this function in the real world is remarkable given that the context of the landing movement may vary widely between performances. For this reason, humans must be capable of rapidly adjusting the mechanical properties of the knee under impact load in order to satisfy many competing demands. However, the processes involved in regulating these properties in response to changing constraints remain poorly understood. In particular, the effects of muscle fatigue on knee function during step landing are yet to be fully explored. Fatigue of the knee muscles is significant for 2 reasons. First, it is thought to have detrimental effects on the ability of the knee to act as a shock absorber and is considered a risk factor for knee injury. Second, fatigue of knee muscles provides a unique opportunity to examine the mechanisms by which healthy individuals alter knee function. A review of the literature revealed that the effect of fatigue on knee function during landing has been assessed by comparing pre and postfatigue measurements, with fatigue induced by a voluntary exercise protocol. The information is limited by inconsistent results with key measures, such as knee stiffness, showing varying results following fatigue, including increased stiffness, decreased stiffness or failure to detect any change in some experiments. Further consideration of the literature questions the validity of the models used to induce and measure fatigue, as well as the pre-post study design, which may explain the lack of consensus in the results. These limitations cast doubt on the usefulness of the available information and identify a need to investigate alternative approaches. Based on the results of this review, the aims of this thesis were to: • evaluate the methodological procedures used in validation of a fatigue model • investigate the adaptation and regulation of post-impact knee mechanics during repeated step landings • use this new information to test the effects of fatigue on knee function during a step-landing task. To address the aims of the thesis, 3 related experiments were conducted that collected kinetic, kinematic and electromyographic data from 3 separate samples of healthy male participants. The methodologies involved optoelectronic motion capture (VICON), isokinetic dynamometry (System3 Pro, BIODEX) and wireless surface electromyography (Zerowire, Aurion, Italy). Fatigue indicators and knee function measures used in each experiment were derived from the data. Study 1 compared the validity and reliability of repetitive stepping and isokinetic contractions with respect to fatigue of the quadriceps and hamstrings. Fifteen participants performed 50 repetitions of each exercise twice in randomised order, over 4 sessions. Sessions were separated by a minimum of 1 week’s rest, to ensure full recovery. Validity and reliability depended on a complex interaction between the exercise protocol, the fatigue indicator, the individual and the muscle of interest. Nevertheless, differences between exercise protocols indicated that stepping was less effective in eliciting valid and reliable changes in peak power and spectral compression, compared with isokinetic exercise. A key finding was that fatigue progressed in a biphasic pattern during both exercises. The point separating the 2 phases, known as the transition point, demonstrated superior between-test reliability during the isokinetic protocol, compared with stepping. However, a correction factor should be used to accurately apply this technique to the study of fatigue during landing. Study 2 examined alterations in knee function during repeated landings, with a different sample (N =12) performing 60 consecutive step landing trials. Each landing trial was separated by 1-minute rest periods. The results provided new information in relation to the pre-post study design in the context of detecting adjustments in knee function during landing. First, participants significantly increased or decreased pre-impact muscle activity or post-impact mechanics despite environmental and task constraints remaining unchanged. This is the 1st study to demonstrate this effect in healthy individuals without external feedback on performance. Second, single-subject analysis was more effective in detecting alterations in knee function compared to group-level analysis. Finally, repeated landing trials did not reduce inter-trial variability of knee function in some participants, contrary to assumptions underpinning previous studies. The results of studies 1 and 2 were used to modify the design of Study 3 relative to previous research. These alterations included a modified isokinetic fatigue protocol, multiple pre-fatigue measurements and singlesubject analysis to detect fatigue-related changes in knee function. The study design incorporated new analytical approaches to investigate fatiguerelated alterations in knee function during landing. Participants (N = 16) were measured during multiple pre-fatigue baseline trial blocks prior to the fatigue model. A final block of landing trials was recorded once the participant met the operational fatigue definition that was identified in Study 1. The analysis revealed that the effects of fatigue in this context are heavily dependent on the compensatory response of the individual. A continuum of responses was observed within the sample for each knee function measure. Overall, preimpact preparation and post-impact mechanics of the knee were altered with highly individualised patterns. Moreover, participants used a range of active or passive pre-impact strategies to adapt post-impact mechanics in response to quadriceps fatigue. The unique patterns identified in the data represented an optimisation of knee function based on priorities of the individual. The findings of these studies explain the lack of consensus within the literature regarding the effects of fatigue on knee function during landing. First, functional fatigue protocols lack validity in inducing fatigue-related changes in mechanical output and spectral compression of surface electromyography (sEMG) signals, compared with isokinetic exercise. Second, fatigue-related changes in knee function during landing are confounded by inter-individual variation, which limits the sensitivity of group-level analysis. By addressing these limitations, the 3rd study demonstrated the efficacies of new experimental and analytical approaches to observe fatigue-related alterations in knee function during landing. Consequently, this thesis provides new perspectives into the effects of fatigue in knee function during landing. In conclusion: • The effects of fatigue on knee function during landing depend on the response of the individual, with considerable variation present between study participants, despite similar physical characteristics. • In healthy males, adaptation of pre-impact muscle activity and postimpact knee mechanics is unique to the individual and reflects their own optimisation of demands such as energy expenditure, joint stability, sensory information and loading of knee structures. • The results of these studies should guide future exploration of adaptations in knee function to fatigue. However, research in this area should continue with reduced emphasis on the directional response of the population and a greater focus on individual adaptations of knee function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim/hypothesis Immune mechanisms have been proposed to play a role in the development of diabetic neuropathy. We employed in vivo corneal confocal microscopy (CCM) to quantify the presence and density of Langerhans cells (LCs) in relation to the extent of corneal nerve damage in Bowman's layer of the cornea in diabetic patients. Methods 128 diabetic patients aged 58±1 yrs with a differing severity of neuropathy based on Neuropathy Deficit Score (NDS—4.7±0.28) and 26 control subjects aged 53±3 yrs were examined. Subjects underwent a full neurological evaluation, evaluation of corneal sensation with non-contact corneal aesthesiometry (NCCA) and corneal nerve morphology using corneal confocal microscopy (CCM). Results The proportion of individuals with LCs was significantly increased in diabetic patients (73.8%) compared to control subjects (46.1%), P=0.001. Furthermore, LC density (no/mm2) was significantly increased in diabetic patients (17.73±1.45) compared to control subjects (6.94±1.58), P=0.001 and there was a significant correlation with age (r=0.162, P=0.047) and severity of neuropathy (r=−0.202, P=0.02). There was a progressive decrease in corneal sensation with increasing severity of neuropathy assessed using NDS in the diabetic patients (r=0.414, P=0.000). Corneal nerve fibre density (P<0.001), branch density (P<0.001) and length (P<0.001) were significantly decreased whilst tortuosity (P<0.01) was increased in diabetic patients with increasing severity of diabetic neuropathy. Conclusion Utilising in vivo corneal confocal microscopy we have demonstrated increased LCs in diabetic patients particularly in the earlier phases of corneal nerve damage suggestive of an immune mediated contribution to corneal nerve damage in diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article analyzes the history of the term "the message" in communication, cultural, and media studies. It goes on to propose that conceptual coherence can only be achieved for this concept if it is considered historically and in evolutionary terms. The article then pursues recent changes in the status of "the message" through 4 phases of semiotic history - (1) the representative (modern), (2) the excessive (postmodern), (3) the productive (user-created), and (4) the message as human identity- Homo nuntius. Having arrived at a conceptualization of 'messaging' as constitutive of our species, the final section provides the example of fashion communication to show what is meant by the term "Homo nuntius - messaging humanity".

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With regard to the long-standing problem of the semantic gap between low-level image features and high-level human knowledge, the image retrieval community has recently shifted its emphasis from low-level features analysis to high-level image semantics extrac- tion. User studies reveal that users tend to seek information using high-level semantics. Therefore, image semantics extraction is of great importance to content-based image retrieval because it allows the users to freely express what images they want. Semantic content annotation is the basis for semantic content retrieval. The aim of image anno- tation is to automatically obtain keywords that can be used to represent the content of images. The major research challenges in image semantic annotation are: what is the basic unit of semantic representation? how can the semantic unit be linked to high-level image knowledge? how can the contextual information be stored and utilized for image annotation? In this thesis, the Semantic Web technology (i.e. ontology) is introduced to the image semantic annotation problem. Semantic Web, the next generation web, aims at mak- ing the content of whatever type of media not only understandable to humans but also to machines. Due to the large amounts of multimedia data prevalent on the Web, re- searchers and industries are beginning to pay more attention to the Multimedia Semantic Web. The Semantic Web technology provides a new opportunity for multimedia-based applications, but the research in this area is still in its infancy. Whether ontology can be used to improve image annotation and how to best use ontology in semantic repre- sentation and extraction is still a worth-while investigation. This thesis deals with the problem of image semantic annotation using ontology and machine learning techniques in four phases as below. 1) Salient object extraction. A salient object servers as the basic unit in image semantic extraction as it captures the common visual property of the objects. Image segmen- tation is often used as the �rst step for detecting salient objects, but most segmenta- tion algorithms often fail to generate meaningful regions due to over-segmentation and under-segmentation. We develop a new salient object detection algorithm by combining multiple homogeneity criteria in a region merging framework. 2) Ontology construction. Since real-world objects tend to exist in a context within their environment, contextual information has been increasingly used for improving object recognition. In the ontology construction phase, visual-contextual ontologies are built from a large set of fully segmented and annotated images. The ontologies are composed of several types of concepts (i.e. mid-level and high-level concepts), and domain contextual knowledge. The visual-contextual ontologies stand as a user-friendly interface between low-level features and high-level concepts. 3) Image objects annotation. In this phase, each object is labelled with a mid-level concept in ontologies. First, a set of candidate labels are obtained by training Support Vectors Machines with features extracted from salient objects. After that, contextual knowledge contained in ontologies is used to obtain the �nal labels by removing the ambiguity concepts. 4) Scene semantic annotation. The scene semantic extraction phase is to get the scene type by using both mid-level concepts and domain contextual knowledge in ontologies. Domain contextual knowledge is used to create scene con�guration that describes which objects co-exist with which scene type more frequently. The scene con�guration is represented in a probabilistic graph model, and probabilistic inference is employed to calculate the scene type given an annotated image. To evaluate the proposed methods, a series of experiments have been conducted in a large set of fully annotated outdoor scene images. These include a subset of the Corel database, a subset of the LabelMe dataset, the evaluation dataset of localized semantics in images, the spatial context evaluation dataset, and the segmented and annotated IAPR TC-12 benchmark.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of constructability is to use construction knowledge and experience during all phases of a project, particularly in the earliest phases of planning and design. It facilitates project objectives before delivery stage, and decreases unnecessary costs during construction phase. Despite the extensive use, constructability concept fails to address many issues related to Operation and Maintenance (O&M) of construction projects. Extending constructability concept, to include the O&M issues, could lead to the projects that are not fitted for construction purposes only, but also fitted for use. This study reviews the literature of constructability implementation, its benefits and shortcomings during the infrastructure life cycle, as well as the delivery success factors of infrastructure projects. This contributes to the propose need of a model to improve the effectiveness and efficiency of infrastructure project by extending the concept of constructability to include O&M. Development of such a model can facilitate post-occupancy stakeholders’ participation in a constructability program. It will help infrastructure owners eliminate project reworks, and improve O&M effectiveness and efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To date, there have been no measuring techniques available that could clearly identify all phases of tear film surface kinetics in one interblink interval. ----- ----- Methods: Using a series of cases, we show that lateral shearing interferometry equipped with a set of robust parameter estimation techniques is able to characterize up to five different phases of tear film surface kinetics that include: (i) initial fast tear film build-up phase, (ii) further slower tear film build-up phase, (iii) tear film stability, (iv) tear film thinning, and (v), after a detected break-up, subsequent tear film deterioration. ----- ----- Results: Several representative examples are given for estimating tear film surface kinetics in measurements in which the subjects were asked to blink and keep their eyes open as long as they could. ----- ----- Conclusions: Lateral shearing interferometry is a noninvasive technique that provides means for temporal characterization of tear film surface kinetics and the opportunity for the analysis of the two-step tear film build-up process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Voluminous (≥3·9 × 105 km3), prolonged (∼18 Myr) explosive silicic volcanism makes the mid-Tertiary Sierra Madre Occidental province of Mexico one of the largest intact silicic volcanic provinces known. Previous models have proposed an assimilation–fractional crystallization origin for the rhyolites involving closed-system fractional crystallization from crustally contaminated andesitic parental magmas, with <20% crustal contributions. The lack of isotopic variation among the lower crustal xenoliths inferred to represent the crustal contaminants and coeval Sierra Madre Occidental rhyolite and basaltic andesite to andesite volcanic rocks has constrained interpretations for larger crustal contributions. Here, we use zircon age populations as probes to assess crustal involvement in Sierra Madre Occidental silicic magmatism. Laser ablation-inductively coupled plasma-mass spectrometry analyses of zircons from rhyolitic ignimbrites from the northeastern and southwestern sectors of the province yield U–Pb ages that show significant age discrepancies of 1–4 Myr compared with previously determined K/Ar and 40Ar/39Ar ages from the same ignimbrites; the age differences are greater than the errors attributable to analytical uncertainty. Zircon xenocrysts with new overgrowths in the Late Eocene to earliest Oligocene rhyolite ignimbrites from the northeastern sector provide direct evidence for some involvement of Proterozoic crustal materials, and, potentially more importantly, the derivation of zircon from Mesozoic and Eocene age, isotopically primitive, subduction-related igneous basement. The youngest rhyolitic ignimbrites from the southwestern sector show even stronger evidence for inheritance in the age spectra, but lack old inherited zircon (i.e. Eocene or older). Instead, these Early Miocene ignimbrites are dominated by antecrystic zircons, representing >33 to ∼100% of the dated population; most antecrysts range in age between ∼20 and 32 Ma. A sub-population of the antecrystic zircons is chemically distinct in terms of their high U (>1000 ppm to 1·3 wt %) and heavy REE contents; these are not present in the Oligocene ignimbrites in the northeastern sector of the Sierra Madre Occidental. The combination of antecryst zircon U–Pb ages and chemistry suggests that much of the zircon in the youngest rhyolites was derived by remelting of partially molten to solidified igneous rocks formed during preceding phases of Sierra Madre Occidental volcanism. Strong Zr undersaturation, and estimations for very rapid dissolution rates of entrained zircons, preclude coeval mafic magmas being parental to the rhyolite magmas by a process of lower crustal assimilation followed by closed-system crystal fractionation as interpreted in previous studies of the Sierra Madre Occidental rhyolites. Mafic magmas were more probably important in providing a long-lived heat and material flux into the crust, resulting in the remelting and recycling of older crust and newly formed igneous materials related to Sierra Madre Occidental magmatism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Granadilla eruption at 600 ka was one of the largest phonolitic explosive eruptions from the Las Cañadas volcano on Tenerife, producing a classical plinian eruptive sequence of a widespread pumice fall deposit overlain by an ignimbrite. The eruption resulted in a major phase of caldera collapse that probably destroyed the shallow-level magma chamber system. Granadilla pumices contain a diverse phenocryst assemblage of alkali feldspar + biotite + sodian diopside to aegirine–augite + titanomagnetite + ilmenite + nosean/haüyne + titanite + apatite; alkali feldspar is the dominant phenocryst and biotite is the main ferromagnesian phase. Kaersutite and partially resorbed plagioclase (oligoclase to sodic andesine) are present in some eruptive units, particularly in pumice erupted during the early plinian phase, and in the Granadilla ignimbrite at the top of the sequence. Associated with the kaersutite and plagioclase are small clots of microlitic plagioclase and kaersutite interpreted as quenched blebs of tephriphonolitic magma within the phonolite pumice. The Granadilla Member has previously been recognized as an example of reverse-then-normal compositional zonation, where the zonation is primarily expressed in terms of substantial variations in trace element abundances with limited major element variation (cryptic zonation). Evidence for cryptic zonation is also provided by the chemistry of the phenocryst phases, and corresponding changes in intensive parameters (e.g. T, f O2, f  H2O). Geothermometry estimates indicate that the main body of phonolite magma had a temperature gradient from 860 °C to ∼790 °C, with hotter magma (≥900 °C) tapped at the onset and terminal phases of the eruption. The reverse-then-normal chemical and thermal zonation reflects the initial tapping of a partially hybridized magma (mixing of phonolite and tephriphonolite), followed by the more sequential tapping of a zoned and relatively large body of highly evolved phonolite at a new vent and during the main plinian phase. This suggests that the different magma types within the main holding chamber could have been laterally juxtaposed, as well as in a density-stratified arrangement. Correlations between the presence of mixed phenocryst populations (i.e. presence of plagioclase and kaersutite) and coarser pumice fall layers suggest that increased eruption vigour led to the tapping of hybridized and/or less evolved magma probably from greater depths in the chamber. New oxygen isotope data for glass and mineral separates preclude syn-eruptive interaction between the vesiculating magma and hydrothermal fluids as the cause of the Sr isotope disequilibrium identified previously for the deposit. Enrichment in radiogenic Sr in the pumice glass has more likely been due to low-temperature exchange with meteoric water that was enriched in 87Sr by sea spray, which may be a common process affecting porous and glassy pyroclastic deposits on oceanic islands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eccentric contractions (ECC) require lower systemic oxygen (O2) and induce greater symptoms of muscle damage than concentric contractions (CON); however, it is not known if local muscle oxygenation is lower in ECC than CON during and following exercise. This study compared between ECC and CON for changes in biceps brachii muscle oxygenation [tissue oxygenation index (TOI)] and hemodynamics [total hemoglobin volume (tHb) = oxygenated-Hb + deoxygenated-Hb], determined by near-infrared spectroscopy over 10 sets of 6 maximal contractions of the elbow flexors of 10 healthy subjects. This study also compared between ECC and CON for changes in TOI and tHb during a 10-s sustained and 30-repeated maximal isometric contraction (MVC) task measured immediately before and after and 1–3 days following exercise. The torque integral during ECC was greater (P < 0.05) than that during CON by ∼30%, and the decrease in TOI was smaller (P < 0.05) by ∼50% during ECC than CON. Increases in tHb during the relaxation phases were smaller (P < 0.05) by ∼100% for ECC than CON; however, the decreases in tHb during the contraction phases were not significantly different between sessions. These results suggest that ECC utilizes a lower muscle O2 relative to O2 supply compared with CON. Following exercise, greater (P < 0.05) decreases in MVC strength and increases in plasma creatine kinase activity and muscle soreness were evident 1–3 days after ECC than CON. Torque integral, TOI, and tHb during the sustained and repeated MVC tasks decreased (P < 0.01) only after ECC, suggesting that muscle O2 demand relative to O2 supply during the isometric tasks was decreased after ECC. This could mainly be due to a lower maximal muscle mass activated as a consequence of muscle damage; however, an increase in O2 supply due to microcirculation dysfunction and/or inflammatory vasodilatory responses after ECC is recognized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to compare between electrical muscle stimulation (EMS) and maximal voluntary (VOL) isometric contractions of the elbow flexors for changes in biceps brachii muscle oxygenation (tissue oxygenation index, TOI) and haemodynamics (total haemoglobin volume, tHb = oxygenated-Hb + deoxygenated-Hb) determined by near-infrared spectroscopy (NIRS). The biceps brachii muscle of 10 healthy men (23–39 years) was electrically stimulated at high frequency (75 Hz) via surface electrodes to evoke 50 intermittent (4-s contraction, 15-s relaxation) isometric contractions at maximum tolerated current level (EMS session). The contralateral arm performed 50 intermittent (4-s contraction, 15-s relaxation) maximal voluntary isometric contractions (VOL session) in a counterbalanced order separated by 2–3 weeks. Results indicated that although the torque produced during EMS was approximately 50% of VOL (P<0Æ05), there was no significant difference in the changes in TOI amplitude or TOI slope between EMS and VOL over the 50 contractions. However, the TOI amplitude divided by peak torque was approximately 50% lower for EMS than VOL (P<0Æ05), which indicates EMS was less efficient than VOL. This seems likely because of the difference in the muscles involved in the force production between conditions. Mean decrease in tHb amplitude during the contraction phases was significantly (P<0Æ05) greater for EMS than VOL from the 10th contraction onwards, suggesting that the muscle blood volume was lower in EMS than VOL. It is concluded that local oxygen demand of the biceps brachii sampled by NIRS is similar between VOL and EMS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basic researches about constructability issue done in different countries demonstrate the potential power of this concept to affect the total goals of the construction projects which can lead to significant cost saving, time saving and better quality via considering the contractors’ construction experience in earlier construction project phases. The present research assesses the familiarity of Malaysian building contractors with constructability concept and activities; then it tests their general opinions on its implementation in different construction phases and projects. As the result, some descriptive studies are done on amount of contractors’ familiarity with this term among various kinds of contractors, projects and contracts which can illustrate constructability implementation level among Malaysian contractors. The results of this study show that Malaysian contractors are not all familiar enough with this term and there are still some barriers that prevent them from taking part in its activities completely. The differences in amount of familiarity with constructability matter and its terms of implementation are quite obvious among various types of participants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Becoming a teacher in technology-rich classrooms is a complex and challenging transition for career-change entrants. Those with generic or specialist Information and Communication Technology (ICT) expertise bring a mindset about purposeful uses of ICT that enrich student learning and school communities. The transition process from a non-education environment is both enhanced and constrained by shifting the technology context of generic or specialist ICT expertise, developed through a former career as well as general life experience. In developing an understanding of the complexity of classrooms and creating a learner centred way of working, perceptions about learners and learning evolve and shift. Shifts in thinking about how ICT expertise supports learners and enhances learning preceded shifts in perceptions about being a teacher, working with colleagues, and functioning in schools that have varying degrees of intensity and impact on evolving professional identities. Current teacher education and school induction programs are seen to be falling short of meeting the needs of career-change entrants and, as a flow on, the students they nurture. Research (see, for example, Tigchelaar, Brouwer, & Korthagen, 2008; Williams & Forgasz, 2009) highlights the value of generic and specialist expertise career-change teachers bring to the profession and draws attention to the challenges such expertise begets (Anthony & Ord, 2008; Priyadharshini & Robinson-Pant, 2003). As such, the study described in this thesis investigated perceptions of career-change entrants, who have generic (Mishra & Koehler, 2006) or specialist expertise, that is, ICT qualifications and work experience in the use of ICT. The career-change entrants‘ perceptions were sought as they shifted the technology context and transitioned into teaching in technology-rich classrooms. The research involved an interpretive analysis of qualitative data and quantitative data. The study used the explanatory case study (Yin, 1994) methodology enriched through grounded theory processes (Strauss & Corbin, 1998), to develop a theory about professional identity transition from the perceptions of the participants in the study. The study provided insights into the expertise and experiences of career change entrants, particularly in relation to how professional identities that include generic and specialist ICT knowledge and expertise were reconfigured while transitioning into the teaching profession. This thesis presents the Professional Identity Transition Theory that encapsulates perceptions about teaching in technology-rich classrooms amongst a selection of the increasing number of career-change entrants. The theory, grounded in the data, (Strauss & Corbin, 1998) proposes that career-change entrants experience transition phases of varying intensity that impact on professional identity, retention and development as a teacher. These phases are linked to a shift in perceptions rather than time as a teacher. Generic and specialist expertise in the use of ICT is a weight of the past and an asset that makes the transition process more challenging for career-change entrants. The study showed that career-change entrants used their experiences and perceptions to develop a way of working in a school community. Their way of working initially had an adaptive orientation focussed on immediate needs as their teaching practice developed. Following a shift of thinking, more generative ways of working focussed on the future emerged to enable continual enhancement and development of practice. Sustaining such learning is a personal, school and systemic challenge for the teaching profession.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today, polarisation of the fashion textile industry has already begun as smart, intelligent and conscientious fashion emerges as a backlash to the experience of choice fatigue, poor quality, dumb design and greenwash. But the process, development and manufacture of fashion textiles is complex. And the demand, both customer and industry driven, for new integrated product policies,2 designed to minimise environmental impacts by looking at all phases of a product's life cycle, is problematic due to complexity and a lack of networking tools. This article explores these issues through the construct of the department store of the future.