908 resultados para PP SEBS BLENDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dept. of Polymer Science and Rubber Technology, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study was undertaken to prepare nanosilica by a simple cost effective means and to use it as a potential nanomodifier in thermoplastic matrices and to develop useful composites. Nanosilica was prepared from sodium silicate and dilute hydrochloric acid by polymer induced crystallization technique under controlled conditions. The silica surface was modified by silane coupling agent to decrease the agglomeration and thus to increase the reinforcement with polymer. The pristine nanosilica and modified nanosilica were used to make nano-micro hybrid composites. Short glass fibres and nylon fibres were used as microfillers. The hybrid nanocomposites based on Polypropylene (PP) and High density poly ethylene (HOPE) are prepared. The mechanical, thermal, crystallization and dynamic mechanical properties of the composites are evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed study of the blends of ethylene-propylene-diene rubber (EPDM) and chlorobutyl rubber (CIIR) is proposed in this study. These blends may find application in the manufacture of curing diaphragms/curing envelopes for tire curing applications. EPDM possesses better physical properties such as high heat resistance, ozone resistance, cold and moisture resistance, high resistance to permanent defonnation, very good resistance to flex cracking and impact. Because of the low gas and moisture penneability, good weathering resistance and high thermal stability of CIIR, blends of EPDM with CIlR may be attractive, if sufficient mechanical strength can be developed. Although a lot of work has been done on elastomer blends, studies on the blends of EPDM and CIIR rubbers are meagre. Hence in this investigation it is proposed to make a systematic study on the characteristics of EPDM and CIIR rubber blends.The mechanical and physical properties of an elastomer blend depend mainly on the blend compatibility. So in the first part of the study, it is proposed to develop compatible blends of EPDM with CIIR. Various commercial grades of ethylenepropylene- diene rubber are proposed to be blended with a specific grade of chlorobutyl rubber at varying proportions. The extent of compatibility in these blends is proposed to be evaluated based on their mechanical properties such as tensile strength, tear strength and ageing resistance. In addition to the physical property measurements, blend compatibility is also proposed to be studied based on the glass transition behavlour of the blends in relation to the Tg's of the individual components using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The phase morphology of the blends is also proposed to be investigated by Scanning Electron Microscopy (SEM) studies of the tensile fracture surfaces. In the case of incompatible blends, the effect of addition of chlorosulfonated polyethylene as a compatibiliser is also proposed to be investigated.In the second part of the study, the effect of sulphur curing and resin curing on the curing behaviour and the vulcanizate properties of EPDM/CIIR blends are planned to be evaluated. Since the properties of rubber vulcanizates are determined by their network structures, it is proposed to determine the network structure of the vulcanizates by chemical probes so as to correlate it with the mechanical properties.In the third part of the work, the effect of partial precuring of one of the components prior to blending as a possible means of improving the properties of the blend is proposed to be investigated. This procedure may also help to bring down the viscosity mismatch between the constituent e1astomers and provide covulcanization of the blend.The rheological characteristics and processability of the blends are proposed to be investigated in the last part of the study. To explore their possible applications, the air permeability of the blend samples at varying temperatures is proposed to be measured. The thermal diffusivity behaviour of EPDM/CIlR blends is also proposed to be investigated using novel laser technique. The thermal diffusivity of the blends along with the thermal degradation resistance may help to determine whether the blends are suitable for high temperature applications such as in the manufacturing of curing envelope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the investigation is to develop new high performance adhesive systems based on neoprene-phenolic blends. Initially the effect of addition of all possible ingredients like fillers, adhesion promoters, curing agents and their optimum compositions to neoprene solution is investigated. The phenolic resin used is a copolymer of phenol-cardanolformaldehyde prepared in the laboratory. The optimum ratio between phenol and cardanol that gives the maximum bond strength in metal-metal, rubber-rubber and rubber-metal specimens has been identified. Further the ratio between total phenols and formaldehyde is also optimised. The above adhesive system is further modified by the addition of epoxidized phenolic novolacs. For this purpose, phenolic novolac resins are prepared in different stoichiometric ratios and are subsequently epoxidized. The effectiveness of the adhesive for bonding different metal and rubber substrates is another part of the study. To study the ageing behaviour, different bonded specimens are exposed to high temperature, hot water and salt water and adhesive properties have been evaluated. The synthesized resins have been characterized by FTIR , HNMR spectroscopy. The molecular weights of the resins have been obtained by GPC. Thermogravimetric analysis and differential scanning calorimetry are used to study the thermal properties. The fractured surface analysis is studied by scanning electron microscopy. The study has brought to light the influence of phenol/ formaldehyde stoichiometric ratio, addition of cardanol (a renewable resource), adhesion promoters and suitability of the adhesive for different substrates and the age resistance of adhesive joints among other things.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are a large number of commercial examples and property advantages of immiscible elastomer blends.73 Blends of natural rubber (NR) and polybutadiene (BR) have shown various advantages including heat stability, improved elasticity and abrasion resistance. Ethylene-propylene-diene-rubber (EPDM) blended with styrene-butadiene rubber (SBR) has shown improvements in ozone and chemical resistance with better compression set properties. Blends of EPDM and nitrile rubber (NBR) have been cited as a compromise for obtaining moderate oil and ozone resistance with improved low temperature properties. Neoprene (CR)/BR blends offer improved low temperature properties and abrasion resistance with better processing characteristics etc. However, in many of the commercial two-phase elastomer blends, segregation of the crosslinking agents, carbon black or antioxidants preferentially into one phase can result in failure to attain optimum properties. Soluble and insoluble compounding ingredients are found to be preferentially concentrated in one phase. The balance of optimum curing of both phases therefore presents a difficult problem. It has been the aim of this study to improve the performance of commercially important elastomer blends such as natural rubber (NR)/styrene-butadiene rubber (SBR) and natural rubber/polybutadiene rubber (BR) by industrially viable procedures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study is undertaken on PVC blends because of their all-round importance-One of the most prominent needs of PVC in application end-use is permanent plasticizationlo. Butadiene-acrylonitrile rubber (NBR) has been utilized as permanent plasticizer for PVC since the 1940s for wire and cable insulation, food contact, and pondliners used for oil containment23'24. Also plasticized PVC has been added to vulcanizable nitrile rubber, to yield improved ozone, thermal ageing, and chemical resistance resulting in applications including fuel hose covers, gaskets, conveyor belt covers, and printing roll covers. This blend is miscible in the range of 23 to 45 per cent acrylonitrile content in the butadiene-acrylqnitrile copolymerzs. The first phase of the study was directed towards modification blends. These blends, in addition to the polymers, require a host of additives like curatives for the NBR phase and stabilizers for the PVC phase26of the existing PVC blends, especially NBR/PVC. The second phase of the study was directed towards the development of novel PVC based blends. Chloroprene rubber (polychloroprene) (CR) is structurally similar to PVC and hence is likely to form successful blends with PVC32.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary aim of this work has been to develop a cost effective process that can be operated at room temperature for developing latex reclaim with superior mechanical properties. With this objective in mind the researcher proposes to study the reclaiming action of four different chemicals on latex products waste. Waste latex products are chosen because it has a higher potential to generate good quality rubber hydrocarbon since all latex products are based on either high quality concentrated latex or creamed latex. Moreover, all latex products are only lightly crosslinked and not masticated and hence not mechanically degraded. The author also proposes to fully explore the possible application of latex reclaim in various fields..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of curing agents and fillers in the constituents of an elastomer blend is an important factor which determines the curing behaviour and vulcanizate properties of the blend. The distribution of curatives and fillers largely depends on the nature of elastomers. The curatives tend to migrate preferentially to the rubber of higher unsaturation and/or higher polarity, and reinforcing fillers tend to get distributed in the low viscosity phase, resulting in inferior mechanical properties of the blends. The thesis suggests several methods for improving mechanical properties of blends like NBR/butyl, NR/butyl, NBR/EPDM and NR/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall objective of the present study was to develop a novel and economic reclaiming process that does not adversely affect the quality of rubber and to investigate methods of utilising the reclaim. Since waste latex products represent a potential source of high quality rubber hydrocarbon, it was decided to develop a process based on such latex wastes. The study revealed that latex reclaim could replace raw natural rubber upto about 50 per cent of its weight without any serious deterioration in mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodegradation is the chemical degradation of materials brought about by the action of naturally occurring microorganisms. Biodegradation is a relatively rapid process under suitable conditions of moisture, temperature and oxygen availability. The logic behind blending biopolymers such as starch with inert polymers like polyethylene is that if the biopolymer component is present in sufficient amount, and if it is removed by microorganisms in the waste disposal environment, then the base inert plastic should slowly degrade and disappear. The present work focuses on the preparation of biodegradable and photodegradable blends based on low density polyethylene incorporating small quantities of ionomers as compatibilizers. The thesis consists of eight chapters. The first chapter presents an introduction to the present research work and literature survey. The details of the materials used and the experimental procedures undertaken for the study are described in the second chapter. Preparation and characterization of low density polyethylene (LDPE)-biopolymer (starch/dextrin) blends are described in the third chapter. The result of investigations on the effect of polyethylene-co-methacrylic acid ionomers on the compatibility of LDPE and starch are reported in chapter 4. Chapter 5 has been divided into two parts. The first part deals with the effect of metal oxides on the photodegradation of LDPE. The second part describes the function of metal stearates on the photodegradation of LDPE. The results of the investigations on the role of various metal oxides as pro-oxidants on the degradation of ionomer compatibilized LDPE-starch blends are reported in chapter 6. Chapter 7 deals with the results of investigations on the role of various metal stearates as pro-oxidants on the degradation of ionomer compatibilized LDPE-starch blends. The conclusion of the investigations is presented in the last chapter of the thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoplastic elastomers are a relatively new class of materials which compete with thermoset rubbers in some areas and thermoplastic materials in other areas. The main thrust of the present investigation is a comparative study’ on commercially .available triblock. styrene thermoplastic elastomers and those derived from blends of acrylonitrile-butadiene rubber and poly(vinyl chloride). The styrene—based thermoplastic elastomers are gaining acceptance as a replacement for both natural and synthetic rubber‘ in many‘ applications. TPEs based on blends of elastomers and plastics ix: the fastest growing segment of the broad class of thermoplastic elastomers. Broad applicability and simple technology of production are the attractive features of this class of TPES. NBR/PVC thermoplastic elastomers were selected for this investigation due to the versatility of PVC, its number one position, low cost. ability to Ina compounded into various flexible and rigid form with good physical and chemical and weathering properties etc., which will be passed over to PVC blends especially NBR/PVC blends which are known to form miscible systems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary objective of this work is to develop an efficient accelerator system for low temperature vulcanization of rubbers. Although xanthates are known to act as accelerators for low temperature vulcanization, a systematic study on the mechanism of vulcanization, the mechanical properties of the vulcanizates at varying temperatures of vulcanization, cure characteristics etc are not reported. Further. xanthate based curing systems are not commonly used because of their chance for premature vulcanization during processing. The proposed study is to develop a novel accelerator system for the low temperature vulcanization of rubbers having enough processing safely. lt is also proposed to develop a method for the prevulcanisation of natural rubber latex at room temperature. As already mentioned the manufacture of rubber products at low temperature will improve its quality and appearance. Also, energy consumption can be reduced by low temperature vulcanization. in addition, low temperature vulcanization will be extremely useful in the area of repair of defective products, since subjecting finished products to high temperatures during the process of repair will adversely affect the quality of the product. Further. room temperature curing accelerator systems will find extensive applications in surface coating industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attempts have been made to attain satisfactory network structures in each of the phases of a rubber blend by minimising the cure rate imbalance by employing methods such as grafting of accelerators to the slow curing rubber, chemically bonding the crosslinking agents to the rubber in which it has lower solubility, functionalisation of the slow curing rubber, masterbatching of the curing agents to the slow curing rubber etc. Functionalisation of the slow curing constituents of NR/IIR and NR/EIPDM blends is tried using novel reagents as the first part of this study. However, the crux of the present study is a more direct approach to attaining a covulcanized state in NR/IIR and NR/EPDM blends: Precuring the slow curing rubber (IIR or EPDM) to a low level when it can still blend with NR and then to ck) the final curing after blending with NR. TNM3 precuring is also likely to minimise the viscosity mismatch. Since a low level of resmmal crosslink density is likely to be present lJ1 reclaimed rubbers, blending heat resistant reclaimed rubber such as butyl reclaim with NR may also have the same effect of precuring IIR, and then blending with NR. Hence use of IIR reclaim for developing blends with NR is also proposed to be investigated in this study