969 resultados para PORTAL-HYPERTENSION
Resumo:
It has been recently shown that calcium channel blockers might have a protective effect on cardiac fibrogenesis induced by aldosterone. The objective of this study was to evaluate the protective effect of felodipine, a dihydropyridine calcium channel blocker, against heart and kidney damage caused by aldosterone-high sodium intake in uninephrectomized rats. Wistar rats were divided into three groups: CNEP (uninephrectomized + 1% NaCl in the drinking water, N = 9); ALDO (same as CNEP group plus continuous infusion of 0.75 µg/h aldosterone, N = 12); ALDOF (same as ALDO group plus 30 mg·kg-1·day-1 felodipine in the drinking water, N = 10). All results were compared with those of age-matched, untreated rats (CTL group, N = 10). After 6 weeks, tail cuff blood pressure was recorded and the rats were killed for histological analysis. Blood pressure (mmHg) was significantly elevated (P < 0.05) in ALDO (180 ± 20) and ALDOF (168 ± 13) compared to CTL (123 ± 12) and CNEP (134 ± 13). Heart damage (lesion scores - median and interquartile range) was 7.0 (5.5-8.0) in ALDO and was fully prevented in ALDOF (1.5; 1.0-2.0). Also, left ventricular collagen volume fraction (%) in ALDOF (2.9 ± 0.5) was similar to CTL (2.9 ± 0.5) and CNEP (3.4 ± 0.4) and decreased compared to ALDO (5.1 ± 1.6). Felodipine partially prevented kidney injury since the damage score for ALDOF (2.0; 2.0-3.0) was significantly decreased compared to ALDO (7.5; 4.0-10.5), although higher than CTL (null score). Felodipine has a protective effect on the myocardium and kidney as evidenced by decreased perivascular inflammation, myocardial necrosis and fibrosis.
Resumo:
We investigated the effects of low ouabain concentrations on systolic (SAP) and diastolic (DAP) arterial pressures and on pressor reactivity in 3-month-old male spontaneously hypertensive rats (SHR). Arterial blood pressure (BP) and pressor reactivity to phenylephrine (PHE) were investigated before and after 0.18 μg/kg ouabain administration (N = 6). The influence of hexamethonium (N = 6), canrenone (N = 6), enalapril (N = 6), and losartan (N = 6) on ouabain actions was evaluated. Ouabain increased BP (SAP: 137 ± 5.1 to 150 ± 4.7; DAP: 93.7 ± 7.7 to 116 ± 3.5 mmHg; P<0.05) but did not change PHE pressor reactivity. Hexamethonium reduced basal BP in control but not in ouabain-treated rats. However, hexamethonium + ouabain increased DAP sensitivity to PHE. Canrenone did not affect basal BP but blocked ouabain effects on SAP. However, after canrenone + ouabain administration, DAP pressor reactivity to PHE still increased. Enalapril and losartan reduced BP and abolished SAP and DAP responses to ouabain. Enalapril + ouabain reduced DAP reactivity to PHE, while losartan + ouabain reduced SAP and DAP reactivity to PHE. In conclusion, a small dose of ouabain administered to SHR increased BP without altering PHE pressor reactivity. Although the renin-angiotensin system (RAS), Na+ pump and autonomic reflexes are involved in the effects of ouabain on PHE reactivity, central mechanisms might blunt the actions of ouabain on PHE pressor reactivity. The effect of ouabain on SAP seems to depend on the inhibition of both Na+ pump and RAS, whereas the effect on DAP seems to depend only on RAS.
Resumo:
Meconium aspiration syndrome causes respiratory failure after birth and in vivo monitoring of pulmonary edema is difficult. The objective of the present study was to assess hemodynamic changes and edema measured by transcardiopulmonary thermodilution in low weight newborn piglets. Additionally, the effect of early administration of sildenafil (2 mg/kg vo, 30 min after meconium aspiration) on this critical parameter was determined in the meconium aspiration syndrome model. Thirty-eight mechanically ventilated anesthetized male piglets (Sus scrofa domestica) aged 12 to 72 h (1660 ± 192 g) received diluted fresh human meconium in the airway in order to evoke pulmonary hypertension (PHT). Extravascular lung water was measured in vivo with a PiCCO monitor and ex vivo by the gravimetric method, resulting in an overestimate of 3.5 ± 2.3 mL compared to the first measurement. A significant PHT of 15 Torr above basal pressure was observed, similar to that of severely affected humans, leading to an increase in ventilatory support. The vascular permeability index increased 57%, suggesting altered alveolocapillary membrane permeability. Histology revealed tissue vessel congestion and nonspecific chemical pneumonitis. A group of animals received sildenafil, which prevented the development of PHT and lung edema, as evaluated by in vivo monitoring. In summary, the transcardiopulmonary thermodilution method is a reliable tool for monitoring critical newborn changes, offering the opportunity to experimentally explore putative therapeutics in vivo. Sildenafil could be employed to prevent PHT and edema if used in the first stages of development of the disease.
Resumo:
Neurogenic hypertension has been the subject of extensive research worldwide. This review is based on the premise that some forms of neurogenic hypertension are caused in part by the formation of angiotensin-II (Ang-II)-induced reactive oxygen species along the subfornical organ-paraventricular nucleus of the hypothalamus-rostral ventrolateral medulla pathway (SFO-PVN-RVLM pathway). We will discuss the recent contribution of our laboratory and others regarding the mechanisms by which neurons in the SFO (an important circumventricular organ) are activated by Ang-II, how the SFO communicates with two other important areas involved in sympathetic activity regulation (PVN and RVLM) and how Ang-II-induced reactive oxygen species participate along the SFO-PVN-RVLM pathway in the pathogenesis of neurogenic hypertension.
Resumo:
Epidemiological and experimental studies have led to the hypothesis of the fetal origin of adult diseases, suggesting that some adult diseases might be determined before birth by altered fetal development. Maternal diabetes subjects the fetus to an adverse environment that has been demonstrated to result in metabolic, cardiovascular and renal impairment in the offspring. The growing amount of obesity in young females in developed and some developing countries should contribute to increasing the incidence of diabetes among pregnant women. In this review, we discuss how renal and extrarenal mechanisms participate in the genesis of hypertension induced by a diabetic status during fetal development.
Resumo:
Biomarkers have been identified for pulmonary arterial hypertension, but are less well defined for specific etiologies such as congenital heart disease-associated pulmonary arterial hypertension (CHDPAH). We measured plasma levels of eight microvascular dysfunction markers in CHDPAH, and tested for associations with survival. A cohort of 46 inoperable CHDPAH patients (age 15.0 to 60.2 years, median 33.5 years, female:male 29:17) was prospectively followed for 0.7 to 4.0 years (median 3.6 years). Plasma levels of von Willebrand factor antigen (VWF:Ag), tissue plasminogen activator (t-PA) and its inhibitor (PAI-1), P-selectin, reactive C-protein, tumor necrosis factor alpha, and interleukin-6 and -10 were measured at baseline, and at 30, 90, and 180 days in all subjects. Levels of six of the eight proteins were significantly increased in patients versus controls (13 to 106% increase, P < 0.003). Interleukin-10 level was 2.06 times normal (P = 0.0003; Th2 cytokine response). Increased levels of four proteins (t-PA, PAI-1, P-selectin, and interleukin-6) correlated with disease severity indices (P < 0.05). Seven patients died during follow-up. An average VWF:Ag (mean of four determinations) above the level corresponding to the 95th percentile of controls (139 U/dL) was independently associated with a high risk of death (hazard ratio = 6.56, 95%CI = 1.46 to 29.4, P = 0.014). Thus, in CHDPAH, microvascular dysfunction appears to involve Th2 inflammatory response. Of the biomarkers studied, plasma vWF:Ag was independently associated with survival.
Resumo:
The objective of this study was to observe possible interactions between the renin-angiotensin and nitrergic systems in chronic hypoxia-induced pulmonary hypertension in newborn piglets. Thirteen chronically instrumented newborn piglets (6.3 ± 0.9 days; 2369 ± 491 g) were randomly assigned to receive saline (placebo, P) or the AT1 receptor (AT1-R) blocker L-158,809 (L) during 6 days of hypoxia (FiO2 = 0.12). During hypoxia, pulmonary arterial pressure (Ppa; P < 0.0001), pulmonary vascular resistance (PVR; P < 0.02) and the pulmonary to systemic vascular resistance ratio (PVR/SVR; P < 0.05) were significantly attenuated in the L (N = 7) group compared to the P group (N = 6). Western blot analysis of lung proteins showed a significant decrease of endothelial NOS (eNOS) in both P and L animals, and of AT1-R in P animals during hypoxia compared to normoxic animals (C group, N = 5; P < 0.01 for all groups). AT1-R tended to decrease in L animals. Inducible NOS (iNOS) did not differ among P, L, and C animals and iNOS immunohistochemical staining in macrophages was significantly more intense in L than in P animals (P < 0.01). The vascular endothelium showed moderate or strong eNOS and AT1-R staining. Macrophages and pneumocytes showed moderate or strong iNOS and AT1-R staining, but C animals showed weak iNOS and AT1-R staining. Macrophages of L and P animals showed moderate and weak AT2-R staining, respectively, but the endothelium of all groups only showed weak staining. In conclusion, pulmonary hypertension induced by chronic hypoxia in newborn piglets is partially attenuated by AT1-R blockade. We suggest that AT1-R blockade might act through AT2-R and/or Mas receptors and the nitrergic system in the lungs of hypoxemic newborn piglets.
Resumo:
Obesity is strongly associated with high blood pressure, dyslipidemia, and type 2 diabetes. These conditions synergistically increase the risk of cardiovascular events. A number of central and peripheral abnormalities can explain the development or maintenance of high blood pressure in obesity. Of great interest is endothelial dysfunction, considered to be a primary risk factor in the development of hypertension. Additional mechanisms also related to endothelial dysfunction have been proposed to mediate the development of hypertension in obese individuals. These include: increase in both peripheral vasoconstriction and renal tubular sodium reabsorption, increased sympathetic activity and overactivation of both the renin-angiotensin system and the endocannabinoid system and insulin resistance. The discovery of new mechanisms regulating metabolic and vascular function and a better understanding of how vascular function can be influenced by these systems would facilitate the development of new therapies for treatment of obesity-associated hypertension.
Resumo:
We studied the effects of the acute administration of small doses of lead over time on hemodynamic parameters in anesthetized rats to determine if myocardial contractility changes are dependent or not on the development of hypertension. Male Wistar rats received 320 µg/kg lead acetateiv once, and their hemodynamic parameters were measured for 2 h. Cardiac contractility was evaluated in vitro using left ventricular papillary muscles as were Na+,K+-ATPase and myosin Ca2+-ATPase activities. Lead increased left- (control: 112 ± 3.7 vs lead: 129 ± 3.2 mmHg) and right-ventricular systolic pressures (control: 28 ± 1.2vs lead: 34 ± 1.2 mmHg) significantly without modifying heart rate. Papillary muscles were exposed to 8 µM lead acetate and evaluated 60 min later. Isometric contractions increased (control: 0.546 ± 0.07 vs lead: 0.608 ± 0.06 g/mg) and time to peak tension decreased (control: 268 ± 13vs lead: 227 ± 5.58 ms), but relaxation time was unchanged. Post-pause potentiation was similar between groups (n = 6 per group), suggesting no change in sarcoplasmic reticulum activity, evaluated indirectly by this protocol. After 1-h exposure to lead acetate, the papillary muscles became hyperactive in response to a β-adrenergic agonist (10 µM isoproterenol). In addition, post-rest contractions decreased, suggesting a reduction in sarcolemmal calcium influx. The heart samples treated with 8 µM lead acetate presented increased Na+,K+-ATPase (approximately 140%, P < 0.05 for control vs lead) and myosin ATPase (approximately 30%, P < 0.05 for control vs lead) activity. Our results indicated that acute exposure to low lead concentrations produces direct positive inotropic and lusitropic effects on myocardial contractility and increases the right and left ventricular systolic pressure, thus potentially contributing to the early development of hypertension.
Resumo:
Exaggerated blood pressure response (EBPR) during the exercise treadmill test (ETT) has been considered to be a risk factor for hypertension. The relationship of polymorphisms of the renin-angiotensin system gene with hypertension has not been established. Our objective was to evaluate whether EBPR during exercise is a clinical marker for hypertension. The study concerned a historical cohort of normotensive individuals. The exposed individuals were those who presented EBPR. At the end of the observation period (41.7 months = 3.5 years), the development of hypertension was analyzed within the two groups. Genetic polymorphisms and blood pressure behavior were assessed as independent variables, together with the classical risk factors for hypertension. The I/D gene polymorphism of the angiotensin-converting enzyme and M235T of angiotensinogen were ruled out as risk factors for hypertension. EBPR during ETT is not an independent influence on the chances of developing hypertension. No differences were observed between the hypertensive and normotensive individuals regarding gender (P = 0.655), skin color (P = 0.636), family history of hypertension (P = 0.225), diabetes mellitus (P = 0.285), or hypertriglyceridemia (P = 0.734). The risk of developing hypertension increased with increasing body mass index (BMI) and advancing age. The risk factors, which independently influenced the development of hypertension, were age and BMI. EBPR did not constitute an independent risk factor for hypertension and is probably a preclinical phase in the spectrum of normotension and hypertension.
Resumo:
This study determined whether clinical salt-sensitive hypertension (cSSHT) results from the interaction between partial arterial baroreceptor impairment and a high-sodium (HNa) diet. In three series (S-I, S-II, S-III), mean arterial pressure (MAP) of conscious male Wistar ChR003 rats was measured once before (pdMAP) and twice after either sham (SHM) or bilateral aortic denervation (AD), following 7 days on a low-sodium (LNa) diet (LNaMAP) and then 21 days on a HNa diet (HNaMAP). The roles of plasma nitric oxide bioavailability (pNOB), renal medullary superoxide anion production (RMSAP), and mRNA expression of NAD(P)H oxidase and superoxide dismutase were also assessed. In SHM (n=11) and AD (n=15) groups of S-I, LNaMAP-pdMAP was 10.5±2.1 vs 23±2.1 mmHg (P<0.001), and the salt-sensitivity index (SSi; HNaMAP−LNaMAP) was 6.0±1.9 vs 12.7±1.9 mmHg (P=0.03), respectively. In the SHM group, all rats were normotensive, and 36% were salt sensitive (SSi≥10 mmHg), whereas in the AD group ∼50% showed cSSHT. A 45% reduction in pNOB (P≤0.004) was observed in both groups in dietary transit. RMSAP increased in the AD group on both diets but more so on the HNa diet (S-II, P<0.03) than on the LNa diet (S-III, P<0.04). MAP modeling in rats without a renal hypertensive genotype indicated that the AD*HNa diet interaction (P=0.008) increases the likelihood of developing cSSHT. Translationally, these findings help to explain why subjects with clinical salt-sensitive normotension may transition to cSSHT.
Resumo:
Our aims were to describe the prevalence of pulmonary hypertension in patients with acute respiratory distress syndrome (ARDS), to characterize their hemodynamic cardiopulmonary profiles, and to correlate these parameters with outcome. All consecutive patients over 16 years of age who were in the intensive care unit with a diagnosis of ARDS and an in situ pulmonary artery catheter for hemodynamic monitoring were studied. Pulmonary hypertension was diagnosed when the mean pulmonary artery pressure was >25 mmHg at rest with a pulmonary artery occlusion pressure or left atrial pressure <15 mmHg. During the study period, 30 of 402 critically ill patients (7.46%) who were admitted to the ICU fulfilled the criteria for ARDS. Of the 30 patients with ARDS, 14 met the criteria for pulmonary hypertension, a prevalence of 46.6% (95% CI; 28-66%). The most common cause of ARDS was pneumonia (56.3%). The overall mortality was 36.6% and was similar in patients with and without pulmonary hypertension. Differences in patients' hemodynamic profiles were influenced by the presence of pulmonary hypertension. The levels of positive end-expiratory pressure and peak pressure were higher in patients with pulmonary hypertension, and the PaCO2 was higher in those who died. The level of airway pressure seemed to influence the onset of pulmonary hypertension. Survival was determined by the severity of organ failure at admission to the intensive care unit.
Resumo:
Angiotensin II is a key player in the pathogenesis of renovascular hypertension, a condition associated with endothelial dysfunction. We investigated aliskiren (ALSK) and L-arginine treatment both alone and in combination on blood pressure (BP), and vascular reactivity in aortic rings. Hypertension was induced in 40 male Wistar rats by clipping the left renal artery. Animals were divided into Sham, 2-kidney, 1-clip (2K1C) hypertension, 2K1C+ALSK (ALSK), 2K1C+L-arginine (L-arg), and 2K1C+ALSK+L-arginine (ALSK+L-arg) treatment groups. For 4 weeks, BP was monitored and endothelium-dependent and independent vasoconstriction and relaxation were assessed in aortic rings. ALSK+L-arg reduced BP and the contractile response to phenylephrine and improved acetylcholine relaxation. Endothelium removal and incubation with N-nitro-L-arginine methyl ester (L-NAME) increased the response to phenylephrine in all groups, but the effect was greater in the ALSK+L-arg group. Losartan reduced the contractile response in all groups, apocynin reduced the contractile response in the 2K1C, ALSK and ALSK+L-arg groups, and incubation with superoxide dismutase reduced the phenylephrine response in the 2K1C and ALSK groups. eNOS expression increased in the 2K1C and L-arg groups, and iNOS was increased significantly only in the 2K1C group compared with other groups. AT1 expression increased in the 2K1C compared with the Sham, ALSK and ALSK+L-arg groups, AT2 expression increased in the ALSK+L-arg group compared with the Sham and L-arg groups, and gp91phox decreased in the ALSK+L-arg group compared with the 2K1C and ALSK groups. In conclusion, combined ALSK+L-arg was effective in reducing BP and preventing endothelial dysfunction in aortic rings of 2K1C hypertensive rats. The responsible mechanisms appear to be related to the modulation of the local renin-angiotensin system, which is associated with a reduction in endothelial oxidative stress.
Resumo:
Individuals with systemic arterial hypertension have a higher risk of heat-related complications. Thus, the aim of this study was to examine the thermoregulatory responses of hypertensive subjects during recovery from moderate-intensity exercise performed in the heat. A total of eight essential hypertensive (H) and eight normotensive (N) male subjects (age=46.5±1.3 and 45.6±1.4 years, body mass index=25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure=98.0±2.8 and 86.0±2.3 mmHg, respectively) rested for 30 min, performed 1 h of treadmill exercise at 50% of maximal oxygen consumption, and rested for 1 h after exercise in an environmental chamber at 38°C and 60% relative humidity. Skin and core temperatures were measured to calculate heat exchange parameters. Mean arterial pressure was higher in the hypertensive than in the normotensive subjects throughout the experiment (P<0.05, unpaired t-test). The hypertensive subjects stored less heat (H=-24.23±3.99 W·m−2vs N=-13.63±2.24 W·m−2, P=0.03, unpaired t-test), experienced greater variations in body temperature (H=-0.62±0.05°C vsN=-0.35±0.12°C, P=0.03, unpaired t-test), and had more evaporated sweat (H=-106.1±4.59 W·m−2vs N=-91.15±3.24 W·m−2, P=0.01, unpaired t-test) than the normotensive subjects during the period of recovery from exercise. In conclusion, essential hypertensive subjects showed greater sweat evaporation and increased heat dissipation and body cooling relative to normotensive subjects during recovery from moderate-intensity exercise performed in hot conditions.
Resumo:
We investigated the risk factors for pulmonary hypertension (PH) in patients receiving maintenance peritoneal dialysis (MPD). A group of 180 end-stage renal disease patients (124 men and 56 women; mean age: 56.43±8.36) were enrolled in our study, which was conducted between January 2009 and June 2014. All of the patients received MPD treatment in the Dialysis Center of the Second Affiliated Hospital of Soochow University. Clinical data, laboratory indices, and echocardiographic data from these patients were collected, and follow-ups were scheduled bi-monthly. The incidence and relevant risk factors of PH were analyzed. The differences in measurement data were compared by t-test and enumeration data were compared with the χ2 test. Among the 180 patients receiving MPD, 60 were diagnosed with PH. The remaining 120 were regarded as the non-PH group. Significant differences were observed in the clinical data, laboratory indices, and echocardiographic data between the PH and non-PH patients (all P<0.05). Furthermore, hypertensive nephropathy patients on MPD showed a significantly higher incidence of PH compared with non-hypertensive nephropathy patients (P<0.05). Logistic regression analysis showed that the proportion of internal arteriovenous fistula, C-reactive protein levels, and ejection fraction were the highest risk factors for PH in patients receiving MPD. Our study shows that there is a high incidence of PH in patients receiving MPD and hypertensive nephropathy patients have an increased susceptibility to PH.