995 resultados para POROUS SILICON PHOTOLUMINESCENCE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

kinds of Yb3+- and Na+-codoped CaF2 laser crystal with different Na:Yb ratios of 0, 1.5, and 10 are grown by the temperature gradient technique. Room-temperature absorption, photoluminescence spectra, and fluorescence lifetimes belonging to the transitions between ground state F-2(7/2) and excited state F-2(5/2) of Yb3+ ions in the three crystals are measured to study the effect of Na+. Experimental results show that codoping Na+ ions in different Na:Yb ratios can modulate the spectroscopy and photoluminescence properties of Yb3+ ions in a CaF2 lattice in a large scope. (c) 2005 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on an optical interference method to fabricate array microstructures on the surface of silicon wafers by means of five-beam interference of femtosecond laser pulses. Optical microscope and scanning electron microscope observations revealed microstructures with micrometer-order were fabricated. The diffraction characteristics of the fabricated structures were evaluated. The present technique allows one-step realization of functional optoelectronic devices on silicon surface. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new kind of Nd3+, -doped high silica glass (SiO2 > 96% (mass fraction)) was obtained by sintering porous glass impregnated with Nd3+, ions. The absorption and luminescence properties of high silica glass doped with different Nd3+, concentrations were studied. The intensity parameters Omega(t) (t = 2, 4, 6), spontaneous emission probability, fluorescence lifetime, radiative quantum efficiency, fluorescence branching ratio, and stimulated emission cross section were calculated using the Judd-Ofelt theory. The optimal Nd3+ concentration in high silica glass was 0.27% (mole fraction) because of its high quantum efficiency and emission intensity. By comparing the spectroscopic parameters with other Nd3+ doped oxide glasses and commercial silicate glasses, the Nd3+-doped high silica glasses are likely to be a promising material used for high power and high repetition rate lasers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

采用磁控溅射法在硅(111)衬底上制备了C轴高度取向的ZnO薄膜,并研究了退火温度和氧气气氛对ZnO薄膜晶体质量、晶粒度大小和光致发光谱的影响。X射线衍射表明,所有薄膜均为高度C轴择优取向,当退火温度低于900℃时,随着退火温度的升高,薄膜的取向性和结晶度都明显提高。室温下对ZnO薄膜进行了光谱分析,退火后的样品均可观测到明显的紫光发射。在一定的退火温度范围内,还可以观测到明显的紫外双峰。空气中退火的样品,当退火温度达到或高于600℃还可观测到绿光发射。实验结果表明,发光峰强度随退火温度和氧气气氛不同而不