995 resultados para PAL activity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to examine the effect of hemiorchidectomy (HO) on serum FSH, LH, testosterone (T), and inhibin (INH) concentrations as well as on the testicular volume (TV) and on changes in the kinetics of germ cell turnovers in the remaining testis of adult male bonnet monkeys. Blood samples collected at 2200 h at various times before and after HO and testicular biopsies obtained at different periods were subjected to hormone analysis and DNA flow cytometry. Though serum T levels were lowered (p < 0.05) at 12 h after HO, T levels rapidly returned to intact control concentrations by Day 5. While serum LH remained unaltered, serum FSH increased markedly within 2 days of HO and remained significantly (p < 0.05) elevated over the next 90 days. Though serum INH showed a significant decrease (p < 0.05) by 15 min of HO, it returned to approximately 80% of intact levels within one week. The TV of the remaining testis showed maximal increment by Day 30 (p < 0.05) of HO. DNA flow cytometric analysis 24 days after HO showed increases (p < 0.05) in spermatogonia (2C) and primary spermatocytes (4C). These cell types by Day 45 had transformed to round (1C) and elongate (HC) (by 38%, p < 0.001) spermatids. Overall spermatogenesis (conversion of 2C to 1C and HC) showed significant enhancement at Days 110 and 175, suggesting that the spurt in spermatogenic activity is not confined to a single spermatogenic cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple forms of beta-glucosidase (EC 3.2.1.21) of Sporotrichum thermophile were produced when the fungus was grown in a cellulose medium. One beta-glucosidase was purified 16-fold from 6-d-old culture filtrates by ion-exchange and gel-filtration chromatography. The purified enzyme was free of cellulase activity. It hydrolysed aryl beta-D-glucosides and beta-D-linked diglucosides. It was optimally active at pH 5.4, at 65-degrees-C. The apparent K(m) values for p-nitrophenyl beta-D-glucoside (PNPG) and cellobiose were 0.29 and 0.83 mm, respectively. Glucose, fucose, nojirimycin and gluconolactone inhibited beta-glucosidase competitively. At high (> 1 mm) substrate concentration, beta-glucosidase catalysed a parallel transglycosylation reaction. The transglycosylation product formed from cellobiose appeared to be a beta-linked tetramer of glucose. Admixtures of beta-glucosidase and cellulase components showed that the concept of cellobiose inhibition of cellulases was not valid for all components of the cellulase system of S. thermophile. Beta-Glucosidase supplementation also stimulated cellulose hydrolysis by cellulases when there was no accumulation of cellobiose in reaction mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The present study is to evaluate the antiulcer effect of hydroalcoholic (70%) extract of Terminalia chebula fruit. Materials and methods: Aspirin, ethanol and cold restraint stress-induced ulcer methods in rats were used for the study. The effects of the extract on gastric secretions, pH, total and free acidity using pylorus ligated methods were also evaluated. Results: Animals pretreated with doses of 200 and 500 mg/kg hydroalcoholic extract showed significant reduction in lesion index, total affected area and percentage of lesion in comparison with control group (P < 0.05 and P < 0.01) in the aspirin, ethanol and cold restraint stress-induced ulcer models. Similarly extracts increased mucus production in aspirin and ethanol-induced ulcer models. At doses of 200 and 500 mg/kg of T. chebula extract showed antisecretory activity in pylorus ligated model, which lead to a reduction in the gastric juice volume, free acidity, total acidity, and significantly increased gastric pH. Discussion and conclusion: These findings indicate that hydroalcoholic extract of the fruit T. chebula displays potential antiulcerogenic activity. This activity thus lends pharmacological credence to the suggested use of the plant as a natural remedy in the treatment or management of ulcer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a robust strategy for obtaining a high dispersion of ultrafine Pt and PtRu nanoparticles on graphene by exploiting the nucleation of a metal precursor phase on graphite oxide surfaces. Our method opens up new possibilities to engineer graphene-based hybrids for applications in multifunctional nanoscale devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiotensin converting enzyme (ACE) catalyzes the conversion of angiotensin I (Ang I) to angiotensin II (Ang II). ACE also cleaves the terminal dipeptide of vasodilating hormone bradykinin (a nonapeptide) to inactivate this hormone. Therefore, inhibition of ACE is generally used as one of the methods for the treatment of hypertension. `Oxidative stress' is another disease state caused by an imbalance in the production of oxidants and antioxidants. A number of studies suggest that hypertension and oxidative stress are interdependent. Therefore, ACE inhibitors having antioxidant property are considered beneficial for the treatment of hypertension. As selenium compounds are known to exhibit better antioxidant behavior than their sulfur analogues, we have synthesized a number of selenium analogues of captopril, an ACE inhibitor used as an antihypertensive drug. The selenium analogues of captopril not only inhibit ACE activity but also effectively scavenge peroxynitrite, a strong oxidant found in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor based nanoscale heterostructures are promising candidates for photocatalytic and photovoltaic applications with the sensitization of a wide bandgap semiconductor with a narrow bandgap material being the most viable strategy to maximize the utilization of the solar spectrum. Here, we present a simple wet chemical route to obtain nanoscale heterostructures of ZnO/CdS without using any molecular linker. Our method involves the nucleation of a Cd-precursor on ZnO nanorods with a subsequent sulfidation step leading to the formation of the ZnO/CdS nanoscale heterostructures. Excellent control over the loading of CdS and the microstructure is realized by merely changing the initial concentration of the sulfiding agent. We show that the heterostructures with the lowest CdS loading exhibit an exceptionally high activity for the degradation of methylene blue (MB) under solar irradiation conditions; microstructural and surface analysis reveals that the higher activity in this case is related to the dispersion of the CdS nanoparticles on the ZnO nanorod surface and to the higher concentration of surface hydroxyl species. Detailed analysis of the mechanism of formation of the nanoscale heterostructures reveals that it is possible to obtain deterministic control over the nature of the interfaces. Our synthesis method is general and applicable for other heterostructures where the interfaces need to be engineered for optimal properties. In particular, the absence of any molecular linker at the interface makes our method appealing for photovoltaic applications where faster rates of electron transfer at the heterojunctions are highly desirable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis of beta-lactam antibiotics using zinc-containing metallo-beta-lactamases (m beta l) is one of the major bacterial defense systems. These enzymes can catalyze the hydrolysis of a variety of antibiotics including the latest generation of cephalosporins, cephamycins, and imipenem. It is shown in this paper that the cephalosporins having heterocyclic - SR side chains are less prone to m beta l-mediated hydrolysis than the antibiotics that do not have such side chains. This is partly due to the inhibition of enzyme activity by the thione moieties eliminated during hydrolysis. When the enzymatic hydrolysis of oxacillin was carried out in the presence of heterocyclic thiones such as MU, MDT, DMETT, and MMA, the catalytic activity of the enzyme was inhibited significantly by these compounds. Although the heterocyclic - SR moieties eliminated from the beta-lactams upon hydrolysis undergo a rapid tautomerism between thione and thiol forms, these compounds act as thiolate ligands toward zinc(II) ions. The structural characterization of two model tetranuclear zinc(II) thiolate complexes indicates that the -SR side chains eliminated from the antibiotics may interact with the zinc(II) metal center of m beta l through their sulfur atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron(III) complexes FeL(B)] (1-5) of a tetradentate trianionic phenolate-based ligand (L) and modified dipyridophenazine bases (B), namely, dipyrido-6,7,8,9-tetrahydrophenazine (dpqC in 1), dipyrido3,2-a:2',3'-c]phenazine-2-carboxylic acid (dppzc in 2), dipyrido3,2-a:2',3'-c]phenazine-11-sulfonic acid (dppzs in 3), 7-aminodipyrido3,2-a:2',3'-c]phenazine (dppza in 4) and benzoi]dipyridro3,2-a:2',3'-c]phenazine (dppn in 5), have been synthesized, and their photocytotoxic properties studied along with their dipyridophenazine analogue (6). The complexes have a five. electron paramagnetic iron(III) center, and the Fe(III)/Fe(II) redox couple appears at about 0.69 V versus SCE in DMF-0.1 M TBAP. The physicochemical data also suggest that the complexes possess similar structural features as that of its parent complex FeL(dppz)] with FeO3N3 coordination in a distorted octahedral geometry. The DNA-complex and protein-complex interaction studies have revealed that the complexes interact favorably with the biomolecules, the degree of which depends on the nature of the substituents present on the dipyridophenazine ring. Photocleavage Of pUC19 DNA by the complexes has been studied using visible light of 476, 530, and 647 nm wavelengths. Mechanistic investigations with inhibitors show formation of HO center dot radicals via a photoredox pathway. Photocytotoxicity study of the complexes in HeLa cells has shown that the dppn complex (5) is highly active in causing cell death in visible light with sub micromolar IC50 value. The effect of substitutions and the planarity of the phenazine moiety on the cellular uptake are quantified by determining the total Cellular iron content using the inductively coupled plasma-optical emission spectrometry (ICP-OES) technique. The cellular uptake increases marginally with an increase in the hydrophobicity of the dipyridophenazine ligands whereas complex 3 with dppzs shows very high uptake. Insights into the cell death mechanism by the dppn complex 5, obtained through DAFT nuclear staining in HeLa cells, reveal a rapid programmed cell death mechanism following photoactivation of complex 5 with visible light. The effect of substituent on the DNA photocleavage activity of the complexes has been rationalized from the theoretical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three series of novel glitazones were designed and prepared by using appropriate synthetic schemes to incorporate glycine, aromatic and alicyclic amines via two carbon linker. Compounds were synthesized both under conventional and microwave methods. Nineteen out of twenty four synthesized compounds were evaluated for their in vitro glucose uptake activity using isolated rat hemi-diaphragm. Compounds, 6, 9a, 13a, 13b, 13c, 13f and 13h exhibited significant glucose uptake activity. Illustration about their synthesis and in vitro glucose uptake activity is described along with the structure activity relationships. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photocatalytic activity of combustion synthesized nanocrystalline CeAlO3 was determined for the degradation of four anionic and four cationic dyes. The perovskite oxide showed high-photocatalytic activity and a complete degradation of all the dyes was possible within 2 h. The photocatalytic activity of the compound was comparable with the activity of the commercial Degussa P-25 TiO2 catalyst. The degradation of dyes was found to follow first order kinetics and the first order degradation rate constants were determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical modifications of structure, reactivity and catalytic properties of layered triple perovskite oxides, related to the YBa2Cu3O7-delta (123) system, have been briefly reviewed. These oxides form a versatile family of materials with wide-ranging chemical and physical properties. The multiple sites available for chemical doping, and the ability to reversibly intercalate oxygen at the defect sites have rendered these oxides important model systems in the area of oxide catalysis. An attempt has been made to comprehend the hitherto known catalytic reactions and correlate them to various factors like structure, oxygen diffusional limitations, different geometries adopted by various substituents, oxidative non-stoichiometry and activation energy for oxygen desorption. In particular, results on the enhanced catalytic activity of cobalt-substituted 123 oxide systems towards the selective catalytic oxidation of ammonia to nitric oxide and carbon monoxide to carbon dioxide are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The SUMO ligase activity of Mms21/Nse2, a conserved member of the Smc5/6 complex, is required for resisting extrinsically induced genotoxic stress. We report that the Mms21 SUMO ligase activity is also required during the unchallenged mitotic cell cycle in Saccharomyces cerevisiae. SUMO ligase-defective cells were slow growing and spontaneously incurred DNA damage. These cells required caffeine-sensitive Mec1 kinase-dependent checkpoint signaling for survival even in the absence of extrinsically induced genotoxic stress. SUMO ligase-defective cells were sensitive to replication stress and displayed synthetic growth defects with DNA damage checkpoint-defective mutants such as mec1, rad9, and rad24. MMS21 SUMO ligase and mediator of replication checkpoint 1 gene (MRC1) were epistatic with respect to hydroxyurea-induced replication stress or methyl methanesulfonate-induced DNA damage sensitivity. Subjecting Mms21 SUMO ligase-deficient cells to transient replication stress resulted in enhancement of cell cycle progression defects such as mitotic delay and accumulation of hyperploid cells. Consistent with the spontaneous activation of the DNA damage checkpoint pathway observed in the Mms21-mediated sumoylation-deficient cells, enhanced frequency of chromosome breakage and loss was detected in these mutant cells. A mutation in the conserved cysteine 221 that is engaged in coordination of the zinc ion in Loop 2 of the Mms21 SPL-RING E3 ligase catalytic domain resulted in strong replication stress sensitivity and also conferred slow growth and Mec1 dependence to unchallenged mitotically dividing cells. Our findings establish Mms21-mediated sumoylation as a determinant of cell cycle progression and maintenance of chromosome integrity during the unperturbed mitotic cell division cycle in budding yeast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanometre-sized powders of SrTiO3 were prepared at 70-100 degrees C by the wet-chemical method of gel to crystallite (G-C) conversion. The crystallite sizes obtained were in the range 5-13 nm, as estimated by transmission electron microscopy (TEM) studies. The photocatalytic activities of these powders in the mineralization of phenol were evaluated in comparison with Degussa P25 (TiO2). The maximum photocatalytic activity was observed for powders annealed in the range 1100-1300 degrees C. The optical spectra of the particle suspensions in water showed broadened absorption around the band gap region, together with the appearance of an absorption maximum in the UV region. The effect of inorganic oxidizing species as electron scavengers on the rate of the photocatalytic degradation of phenol was studied. The influence of bulk and surface defects, which participate in the charge transfer process during photocatalysis, was investigated systematically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanide(II) complexes La(B)(acac)(3)] (1-3) and Gd(B)(acac)(3)] (4-6), where B is a N,N-donor phenanthroline base, viz., 1,10-phenanthroline (phen in 1, 4), dipyrido3,2-d:2',3'-f]quinoxaline (dpq in 2, 5) and dipyrido3,2-a:2',3'-c]phenazine (dppz in 3, 6), have been prepared and characterized. The Gd(111) complexes 4 6 are structurally characterized by single crystal X-ray crystallography. The complexes display GdO6N2 coordination with the ligands showing bidentate chelating mode of bonding. The complexes are non-electrolytic in aqueous DMF and exhibit ligand-centered absorption bands in the UV region. The dppz complexes show a band at 380 nm in DMF. The La(111) complexes are diamagnetic. The Gd(III) complexes are paramagnetic with magnetic moment that corresponds to seven unpaired electrons. The Complexes are avid binders to calf thymus DNA giving K-b values in the range of 4.7 x 10(4) 6.1 x 10(5) M-1 with a relative binding order: 3, 6 (dppz) > 2, 5 (dpq) > 1, 4 (phen). The binding data suggest DNA surface and/or groove binding nature of the complexes. The dpq and dppz complexes efficiently cleave SC DNA to its nicked circular form in UV-A light of 365 nm via formation of both singlet oxygen (O-1(2)) and hydroxyl radical (HO center dot) species. The dppz complexes 3 and 6 exhibit significant PDT effect in He La cervical cancer cells giving respective IC50 value of 460(+/- 50) and 530(+/- 30) nM in UV-A light of 365 rim, and are essentially non-toxic in dark with an IC50 value of >100 mu M. The dppz ligand alone is cytotoxic in dark and UV-A light. A significant decrease in the dark toxicity of the dppz base is observed on binding to the Ln(III) ion while retaining its photocytotoxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A potent superoxide dismutase mimic; Mn-II(HL)(2) [H(2)L = 2,6-bis(benzimidazol-2-yl)pyridine] has been synthesised and characterised by its crystal structure determination and EPR spectroscopy.