1000 resultados para Oxygen.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficiency of fuel cells and metal-air batteries is significantly limited by the activation of oxygen reduction and evolution reactions. Despite the well-recognized role of oxygen reaction kinetics on the viability of energy technologies, the governing mechanisms remain elusive and until now have been addressable only by macroscopic studies. This lack of nanoscale understanding precludes optimization of material architecture. Here, we report direct measurements of oxygen reduction/evolution reactions and oxygen vacancy diffusion on oxygen-ion conductive solid surfaces with sub-10 nm resolution. In electrochemical strain microscopy, the biased scanning probe microscopy tip acts as a moving, electrocatalytically active probe exploring local electrochemical activity. The probe concentrates an electric field in a nanometre-scale volume of material, and bias-induced, picometre-level surface displacements provide information on local electrochemical processes. Systematic mapping of oxygen activity on bare and platinum-functionalized yttria-stabilized zirconia surfaces is demonstrated. This approach allows direct visualization of the oxygen reduction/evolution reaction activation process at the triple-phase boundary, and can be extended to a broad spectrum of oxygen-conductive and electrocatalytic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The marine topshell, Phorcus (Osilinus) turbinatus, is a common component of many archaeological sites in the Mediterranean. This species has been successfully used as a palaeoclimate proxy in Italy. To test whether d18O from P. turbinatus shells can serve as a reliable palaeoclimate archive for other regions of the Mediterranean, we collected live P. turbinatus from the northeast coast of Malta each month for a year. The d18OSHELL values of the outermost growth increments of these live-collected shells ranged between-0.4 and+2.4‰. These values correspond to growing temperatures calculated from shell edge d18O of between 15 °C and 27 °C. Calculated shell edge sea surface temperatures are highly correlated with instrumental records of sea surface temperature recorded over the period of collection. The individuals analysed for this study are smaller than P. turbinatus from populations studied elsewhere in the Mediterranean. Nonetheless, d18OSHELL provides a robust record of sea surface temperatures, suggesting that smaller/younger shells in archaeological deposits can still provide reliable palaeothermometry records. This study extends the upper growth limit P. turbinatus by 2 °C compared with the previous studies of P. turbinatus in the Mediterranean and suggests that, contrary to the previous studies, growth shutdown does not occur in all P. turbinatus when sea surface temperatures exceed 25 °C. This may reflect the higher sample resolution that can be obtained from smaller/faster growing shells, or it may reflect actual higher growth tolerances of P. turbinatus populations in Malta. By showing that P. turbinatus precipitate their shells in d18O equilibrium with surrounding sea water, this study reinforces the potential for the stable isotope chemistry of P. turbinatus shells preserved in Mediterranean archaeological sites to provide a window into the climate and seasonality regimes of the past.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalysts currently employed for the polymerization of ethylene have previously been found to deactivate in the presence of oxygen. It is, therefore, important that oxygen is removed from the ethylene feedstock prior to the polymerization. The Ag/gamma-Al2O3 catalyst exhibits excellent activity and selectivity toward oxygen reduction with hydrogen in the presence of ethylene. TAP vacuum pulse experiments have been utilised to understand the catalytic behaviour of the Ag/gamma-Al2O3 catalyst. TAP multi-pulse experiments have determined the types of active sites that are found on the Ag/gamma-Al2O3 catalyst, and the intrinsic activity of these sites. The lifetime of the reactive adsorbed oxygen intermediate has also been determined through TAP consecutive pulse experiments. Multi-pulse and consecutive pulse data have been combined with ethylene adsorption/desorption rate constants to provide an overview of the Ag/gamma-Al2O3 catalyst system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galactic bulge planetary nebulae show evidence of mixed chemistry with emission from both silicate dust and PAHs. This mixed chemistry is unlikely to be related to carbon dredge up, as third dredge-up is not expected to occur in the low mass bulge stars. We show that the phenomenon is widespread, and is seen in 30 nebulae out of our sample of 40. A strong correlation is found between strength of the PAH bands and morphology, in particular, the presence of a dense torus. A chemical model is presented which shows that hydrocarbon chains can form within oxygen-rich gas through gas-phase chemical reactions. We conclude that the mixed chemistry phenomenon occurring in the galactic bulge planetary nebulae is best explained through hydrocarbon chemistry in an UV-irradiated, dense torus. © 2012 International Astronomical Union.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AimsThe main aim of this study was to determine the virucidal inactivation efficacy of an in-house-designed atmospheric pressure, nonthermal plasma jet operated at varying helium/oxygen feed gas concentrations against MS2 bacteriophage, widely employed as a convenient surrogate for human norovirus.

Methods and ResultsThe effect of variation of percentage oxygen concentration in the helium (He) carrier gas was studied and found to positively correlate with MS2 inactivation rate, indicating a role for reactive oxygen species (ROS) in viral inactivation. The inactivation rate constant increased with increasing oxygen concentrations up to 075% O-2. 3 log(10) (999%) reductions in MS2 viability were achieved after 3min of exposure to the plasma source operated in a helium/oxygen (9925%:075%) gas mixture, with >7 log(10) reduction after 9min exposure.

ConclusionsAtmospheric pressure, nonthermal plasmas may have utility in the rapid disinfection of virally contaminated surfaces for infection control applications.

Significance and Impact of StudyThe atmospheric pressure, nonthermal plasma jet employed in this study exhibits rapid virucidal activity against a norovirus surrogate virus, the MS2 bacteriophage, which is superior to previously published inactivation rates for chemical disinfectants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We unravel the complex chemistry in both the neutral and ionic systems of a radio-frequency-driven atmospheric-pressure plasma in a helium-oxygen mixture (He-0.5% O) with air impurity levels from 0 to 500 ppm of relative humidity from 0% to 100% using a zero-dimensional, time-dependent global model. Effects of humid air impurity on absolute densities and the dominant production and destruction pathways of biologically relevant reactive neutral species are clarified. A few hundred ppm of air impurity crucially changes the plasma from a simple oxygen-dependent plasma to a complex oxygen-nitrogen-hydrogen plasma. The density of reactive oxygen species decreases from 10 to 10 cm, which in turn results in a decrease in the overall chemical reactivity. Reactive nitrogen species (10 cm ), atomic hydrogen and hydroxyl radicals (10-10 cm) are generated in the plasma. With 500 ppm of humid air impurity, the densities of positively charged ions and negatively charged ions slightly increase and the electron density slightly decreases (to the order of 10 cm). The electronegativity increases up to 2.3 compared with 1.5 without air admixture. Atomic hydrogen, hydroxyl radicals and oxygen ions significantly contribute to the production and destruction of reactive oxygen and reactive nitrogen species. © 2013 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most applications helium-based plasma jets operate in an open-air environment. The presence of humid air in the plasma jet will influence the plasma chemistry and can lead to the production of a broader range of reactive species. We explore the influence of humid air on the reactive species in radio frequency (rf)-driven atmospheric-pressure helium-oxygen mixture plasmas (He-O, helium with 5000 ppm admixture of oxygen) for wide air impurity levels of 0-500 ppm with relative humidities of from 0% to 100% using a zero-dimensional, time-dependent global model. Comparisons are made with experimental measurements in an rf-driven micro-scale atmospheric pressure plasma jet and with one-dimensional semi-kinetic simulations of the same plasma jet. These suggest that the plausible air impurity level is not more than hundreds of ppm in such systems. The evolution of species concentration is described for reactive oxygen species, metastable species, radical species and positively and negatively charged ions (and their clusters). Effects of the air impurity containing water humidity on electronegativity and overall plasma reactivity are clarified with particular emphasis on reactive oxygen species. © 2013 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, neutral and charged particle dynamics in both the capacitive and inductive modes of an inductively coupled oxygen discharge are presented. Langmuir probes, laser-assisted photodetachment and two-photon laser-induced fluorescence are employed to measure plasma parameters in the 13.56MHz system for a range of plasma powers and gas pressures. It is found that the capacitive mode is more electronegative with lower molecular dissociation compared with the inductive mode. However, the negative ion density in each mode is comparable. A maximum is observed in the negative ion density and fraction with pressure for both modes. The experimental measurements are supplemented by a global model, which includes capacitive and inductive coupling effects. The model and experiments demonstrate that negative ion loss is dominated by ion-ion recombination and electron detachment at low pressures (