898 resultados para Outdoor recreation.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been considerable scientific interest in personal exposure to ultrafine particles (UFP). In this study, the inhaled particle surface area doses and dose relative intensities in the tracheobronchial and alveolar regions of lungs were calculated using the measured 24-hour UFP time series of school children personal exposures for each recorded activity. Bayesian hierarchical modelling was used to determine mean doses and dose intensities for the various microenvironments. Analysis of measured personal exposures for 137 participating children from 25 schools in the Brisbane Metropolitan Area showed similar trends for all the participating children. Bayesian regression modelling was performed to calculate the daily proportion of children's total doses at different microenvironments. The proportion of alveolar doses in the total daily dose for \emph{home}, \emph{school}, \emph{commuting} and \emph{other} were 55.3\%, 35.3\%, 4.5\% and 5.0\%, respectively, with the \emph{home} microenvironment contributing a majority of children's total daily dose. Children's mean indoor dose was never higher than the outdoor's at any of the schools, indicating there were no persistent indoor particle sources in the classrooms during the measurements. Outdoor activities, eating/cooking at home and commuting were the three activities with the highest dose intensities. Personal exposure was more influenced by the ambient particle levels than immediate traffic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a generic and integrated solar powered remote Unmanned Air Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing system. The system uses a generic gas sensing system for CH4 and CO2 concentrations using metal oxide (MoX) and non-dispersive infrared sensors, and a new solar cell encapsulation method to power the UASs as well as a data management platform to store, analyse and share the information with operators and external users. The system was successfully field tested at ground and low altitudes, collecting, storing and transmitting data in real time to a central node for analysis and 3D mapping. The system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, opening the way to a ubiquitous low cost environmental monitoring. A video of the bench and flight test performed can be seen in the following link https://www.youtube.com/watch?v=Bwas7stYIxQ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major challenge for robot localization and mapping systems is maintaining reliable operation in a changing environment. Vision-based systems in particular are susceptible to changes in illumination and weather, and the same location at another time of day may appear radically different to a system using a feature-based visual localization system. One approach for mapping changing environments is to create and maintain maps that contain multiple representations of each physical location in a topological framework or manifold. However, this requires the system to be able to correctly link two or more appearance representations to the same spatial location, even though the representations may appear quite dissimilar. This paper proposes a method of linking visual representations from the same location without requiring a visual match, thereby allowing vision-based localization systems to create multiple appearance representations of physical locations. The most likely position on the robot path is determined using particle filter methods based on dead reckoning data and recent visual loop closures. In order to avoid erroneous loop closures, the odometry-based inferences are only accepted when the inferred path's end point is confirmed as correct by the visual matching system. Algorithm performance is demonstrated using an indoor robot dataset and a large outdoor camera dataset.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current state of the art robot mapping and navigation systems produce impressive performance under a narrow range of robot platform, sensor and environmental conditions, in contrast to animals such as rats that produce “good enough” maps that enable them to function under an incredible range of situations. In this paper we present a rat-inspired featureless sensor-fusion system that assesses the usefulness of multiple sensor modalities based on their utility and coherence for place recognition, without knowledge as to the type of sensor. We demonstrate the system on a Pioneer robot in indoor and outdoor environments with abrupt lighting changes. Through dynamic weighting of the sensors, the system is able to perform correct place recognition and mapping where the static sensor weighting approach fails.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Timely and comprehensive scene segmentation is often a critical step for many high level mobile robotic tasks. This paper examines a projected area based neighbourhood lookup approach with the motivation towards faster unsupervised segmentation of dense 3D point clouds. The proposed algorithm exploits the projection geometry of a depth camera to find nearest neighbours which is time independent of the input data size. Points near depth discontinuations are also detected to reinforce object boundaries in the clustering process. The search method presented is evaluated using both indoor and outdoor dense depth images and demonstrates significant improvements in speed and precision compared to the commonly used Fast library for approximate nearest neighbour (FLANN) [Muja and Lowe, 2009].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces an improved line tracker using IMU and vision data for visual servoing tasks. We utilize an Image Jacobian which describes motion of a line feature to corresponding camera movements. These camera motions are estimated using an IMU. We demonstrate impacts of the proposed method in challenging environments: maximum angular rate ~160 0/s, acceleration ~6m /s2 and in cluttered outdoor scenes. Simulation and quantitative tracking performance comparison with the Visual Servoing Platform (ViSP) are also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an approach to promote the integrity of perception systems for outdoor unmanned ground vehicles (UGV) operating in challenging environmental conditions (presence of dust or smoke). The proposed technique automatically evaluates the consistency of the data provided by two sensing modalities: a 2D laser range finder and a millimetre-wave radar, allowing for perceptual failure mitigation. Experimental results, obtained with a UGV operating in rural environments, and an error analysis validate the approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considering the wide spectrum of situations that it may encounter, a robot navigating autonomously in outdoor environments needs to be endowed with several operating modes, for robustness and efficiency reasons. Indeed, the terrain it has to traverse may be composed of flat or rough areas, low cohesive soils such as sand dunes, concrete road etc... Traversing these various kinds of environment calls for different navigation and/or locomotion functionalities, especially if the robot is endowed with different locomotion abilities, such as the robots WorkPartner, Hylos [4], Nomad or the Marsokhod rovers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considering the wide spectrum of situations that it may encounter, a robot navigating autonomously in outdoor environments needs to be endowed with several operating modes, for robustness and efficiency reasons. Indeed, the terrain it has to traverse may be composed of flat or rough areas, low cohesive soils such as sand dunes, concrete road etc. . .Traversing these various kinds of environment calls for different navigation and/or locomotion functionalities, especially if the robot is endowed with different locomotion abilities, such as the robots WorkPartner, Hylos [4], Nomad or the Marsokhod rovers. Numerous rover navigation techniques have been proposed, each of them being suited to a particular environment context (e.g. path following, obstacle avoidance in more or less cluttered environments, rough terrain traverses...). However, seldom contributions in the literature tackle the problem of selecting autonomously the most suited mode [3]. Most of the existing work is indeed devoted to the passive analysis of a single navigation mode, as in [2]. Fault detection is of course essential: one can imagine that a proper monitoring of the Mars Exploration Rover Opportunity could have avoided the rover to be stuck during several weeks in a dune, by detecting non-nominal behavior of some parameters. But the ability to recover the anticipated problem by switching to a better suited navigation mode would bring higher autonomy abilities, and therefore a better overall efficiency. We propose here a probabilistic framework to achieve this, which fuses environment related and robot related information in order to actively control the rover operations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autonomous navigation and locomotion of a mobile robot in natural environments remain a rather open issue. Several functionalities are required to complete the usual perception/decision/action cycle. They can be divided in two main categories : navigation (perception and decision about the movement) and locomotion (movement execution). In order to be able to face the large range of possible situations in natural environments, it is essential to make use of various kinds of complementary functionalities, defining various navigation and locomotion modes. Indeed, a number of navigation and locomotion approaches have been proposed in the literature for the last years, but none can pretend being able to achieve autonomous navigation and locomotion in every situation. Thus, it seems relevant to endow an outdoor mobile robot with several complementary navigation and locomotion modes. Accordingly, the robot must also have means to select the most appropriate mode to apply. This thesis proposes the development of such a navigation/locomotion mode selection system, based on two types of data: an observation of the context to determine in what kind of situation the robot has to achieve its movement and an evaluation of the behavior of the current mode, made by monitors which influence the transitions towards other modes when the behavior of the current one is considered as non satisfying. Hence, this document introduces a probabilistic framework for the estimation of the mode to be applied, some navigation and locomotion modes used, a qualitative terrain representation method (based on the evaluation of a difficulty computed from the placement of the robot's structure on a digital elevation map), and monitors that check the behavior of the modes used (evaluation of rolling locomotion efficiency, robot's attitude and configuration watching. . .). Some experimental results obtained with those elements integrated on board two different outdoor robots are presented and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to promote reliability and integrity in autonomous perceptual systems, with a focus on outdoor unmanned ground vehicle (UGV) autonomy. For this purpose, a comprehensive UGV system, comprising many different exteroceptive and proprioceptive sensors has been built. The first contribution of this work is a large, accurately calibrated and synchronised, multi-modal data-set, gathered in controlled environmental conditions, including the presence of dust, smoke and rain. The data have then been used to analyse the effects of such challenging conditions on perception and to identify common perceptual failures. The second contribution is a presentation of methods for mitigating these failures to promote perceptual integrity in adverse environmental conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To objectively assess daily light exposure and physical activity levels in myopic and emmetropic children. Methods: One hundred and two children (41 myopes and 61 emmetropes) aged 10 to 15 years old had simultaneous objective measures of ambient light exposure and physical activity collected over a 2 week period during school term, using a wrist worn actigraphy device (Actiwatch-2). Measures of visible light illuminance and physical activity were captured every 30 seconds, 24 hours a day over this period. Mean hourly light exposure and physical activity for weekdays and weekends were examined. To ensure that seasonal variations didn’t confound comparisons, the light and activity data of the 41 myopes, was compared with 41 age and gender matched emmetropes who wore the Actiwatch over the same two week period. Results: Mean light exposure and physical activity for all 101 children with valid data exhibited significant changes with time of day and day of the week (p<0.0001). On average greater daily light exposure occurred on weekends compared to weekdays (p<0.05), and greater physical activity occurred on weekdays compared to weekends (p<0.01). Myopic children (n = 41, mean daily light exposure 915 ± 519 lux) exhibited significantly lower average light exposure compared to 41 age and gender matched emmetropic children (1272 ± 625 lux, p<0.01). The amount of daily time spent in bright light conditions (>1000 lux) was also significantly greater in emmetropes (127 ± 51 minutes) compared to myopes (91 ± 44 minutes, p<0.001). No significant differences were found between the average daily physical activity levels of myopes and emmetropes (p>0.05). Conclusions: Myopic children exhibit significantly lower daily light exposure, but no significant difference in physical activity compared to emmetropic children. This suggests the important factor involved in documented associations between myopia and outdoor activity is likely exposure to bright outdoor light rather than greater physical activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Personal ultraviolet dosimeters have been used in epidemiological studies to understand the risks and benefits of individuals' exposure to solar ultraviolet radiation (UVR). We investigated the types and determinants of non-compliance associated with a protocol for use of polysulphone UVR dosimeters. In the AusD Study, 1,002 Australian adults (aged 18-75 years) were asked to wear a new dosimeter on their wrist each day for 10 consecutive days to quantify their daily exposure to solar UVR. Of the 10,020 dosimeters distributed, 296 (3%) were not returned or used (Type I non-compliance) and other usage errors were reported for 763 (8%) returned dosimeters (Type II non-compliance). Type I errors were more common in participants with predominantly outdoor occupations. Type II errors were reported more frequently on the first day of measurement; weekend days or rainy days; and among females; younger people; more educated participants or those with outdoor occupations. Half (50%) the participants reported a non-compliance error on at least one day during the 10-day period. However, 92% of participants had at least 7 days of usable data without any apparent non-compliance issues. The factors identified should be considered when designing future UVR dosimetry studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visual localization in outdoor environments is often hampered by the natural variation in appearance caused by such things as weather phenomena, diurnal fluctuations in lighting, and seasonal changes. Such changes are global across an environment and, in the case of global light changes and seasonal variation, the change in appearance occurs in a regular, cyclic manner. Visual localization could be greatly improved if it were possible to predict the appearance of a particular location at a particular time, based on the appearance of the location in the past and knowledge of the nature of appearance change over time. In this paper, we investigate whether global appearance changes in an environment can be learned sufficiently to improve visual localization performance. We use time of day as a test case, and generate transformations between morning and afternoon using sample images from a training set. We demonstrate the learned transformation can be generalized from training data and show the resulting visual localization on a test set is improved relative to raw image comparison. The improvement in localization remains when the area is revisited several weeks later.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The car has arguably had more influence on our lifestyle and urban environment than any other consumer product; allowing unprecedented freedom for living, working and recreation where and when we choose. However, problems of pollution, congestion, road trauma, inefficient land use and social inequality are associated with car use. Despite 100 years of design and technology refinements, the aforementioned problems are significant and persistent: many argue that resolving these problems requires a fundamental redesign of the car. Redesigned vehicles have been proposed such as the MIT CityCar and others such as the Renault Twizy, commercialized. None however have successfully brought about significant change and the study of disruptive innovation offers an explanation for this. Disruptive innovation, by definition, disrupts a market. It also disrupts the product ecosystem. The existing product ecosystem has co-evolved to support the conventional car and is not optimized for the new design: which will require a redesigned ecosystem to support it. A literature review identifies a lack of methodology for identifying the components of product ecosystems and the changes required for disruptive innovation implementation. This paper proposes such a methodology based on Design Thinking, Actor Network Theory, Disruptive Innovation and the CityCar scenarios.