982 resultados para Organic matrix
Resumo:
Alternating copolymer of 7,9-di(thiophen-2-yl)-8H-cyclopenta[a]acenaphthylen-8-one-co-benzothia diazole was synthesized by palladium(0) catalyzed Stille coupling reaction. This solution processable copolymer shows an excellent thermal stability and has a broad absorption range from 300 to 800 nm with a band gap of about 1.51 eV. High LUMO energy level and low band gap of the synthesized copolymers suggest that, this copolymer will be a suitable donor material for use in an organic photovoltaic device. Photovoltaic devices were fabricated from the blend of copolymer and phenyl-C61-butyric acid methyl ester as the active material. (C) 2011 Elsevier By. All rights reserved.
Resumo:
The commercial automotive mufflers are generally of a complicated shape with multiply connected parts and complex acoustic elements. The analysis of such complex mufflers has always been a great challenge. In this paper, an Integrated Transfer Matrix method has been developed to analyze complex mufflers. Integrated transfer matrix relates the state variables across the entire cross-section of the muffler shell, as one moves along the axis of the muffler, and can be partitioned appropriately in order to relate the state variables of different tubes constituting the cross-section. The paper presents a generalized one-dimensional (1-D) approach, using the transfer matrices of simple acoustic elements, which are available from the literature. The present approach is robust and flexible owing to its capability to construct an overall matrix of the muffler with the transfer matrices of individual acoustic elements and boundary conditions, which can then be used to evaluate the transmission loss, insertion loss, etc. Results from the present approach have been validated through comparisons with the available experimental and three-dimensional finite element method (FEM) based results. The results show good agreement with both measurements and FEM analysis up to the cut-off frequency. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The acoustical behavior of an elliptical chamber muffler having an end-inlet and side-outlet port is analyzed semi-analytically. A uniform piston source is assumed to model the 3-D acoustic field in the elliptical chamber cavity. Towards this end, we consider the modal expansion of acoustic pressure field in the elliptical cavity in terms of angular and radial Mathieu functions, subjected to rigid wall condition, whereupon under the assumption of a point source, Green's function is obtained. On integrating this function over piston area of the side or end port and dividing it by piston area, one obtains the acoustic field, whence one can find the impedance matrix parameters characterizing the 2-port system. The acoustic performance of these configurations is evaluated in terms of transmission loss (TL). The analytical results thus obtained are compared with 3-D HA carried on a commercial software for certain muffler configurations. These show excellent agreement, thereby validating the 3-D semi-analytical piston driven model. The influence of the chamber length as well as the angular and axial location of the end and side ports on TL performance is also discussed, thus providing useful guidelines to the muffler designer. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
The direct evidence for the existence of intra-molecular C-F center dot center dot center dot H-N hydrogen bond in organofluorine molecules, in the liquid state, is derived using NMR spectroscopy by the detection of long range interactions among fluorine, nitrogen and hydrogen atoms. The present study reports the determination of the relative signs and magnitudes of through space and through bond couplings to draw unambiguous evidence on the existence of weak molecular interactions involving organic fluorine. It is a simple, easy to implement, N-15 natural abundant two dimensional heteronuclear N-15-H-1 double quantum-single quantum correlation experiment. The existence of intra-molecular hydrogen bond is conclusively established in the investigated molecules. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Chitosan (CS)-polyvinyl alcohol (PVA) cross-linked with sulfosuccinic acid (SSA) and modified with sulfonated polyethersulfone (SPES) mixed-matrix membranes are reported for their application in direct methanol fuel cells (DMFCs). Polyethersulfone (PES) is sulfonated by chlorosulfonic acid and factors affecting the sulfonation reaction, such as time and temperature, are studied. The ion-exchange capacity, degree of sulfonation, sorption, and proton conductivity for the mixed-matrix membranes are investigated. The mixed-matrix membranes are also characterised for their mechanical and thermal properties. The methanol-crossover flux across the mixed-matrix membranes is studied by measuring the mass balance of methanol using the density meter. The methanol cross-over for these membranes is found to be about 33% lower in relation to Nafion-117 membrane. The DMFC employing CS-PVA-SPES mixed-matrix membrane with an optimum content of 25 wt % SPES delivers a peak power-density of 5.5 mW cm-2 at a load current-density of 25 mA cm-2 while operating at 70 degrees C. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
We show with the aid of first-principles electronic structure calculations that suitable choice of the capping ligands may be an important control parameter for crystal structure engineering of nanoparticles. Our calculations on CdS nanocrystals reveal that the binding energy of model trioctylphosphine molecules on the (001) facets of zincblende nanocrystals is larger compared to that on wurtzite facets. Similarly, the binding energy of model cis-oleic acid is found to be dominant for the (10 (1) over bar0) facets of wurtzite structure. As a consequence, trioctylphosphine as a capping agent stabilizes the zincblende structure while cis-oleic acid stabilizes the wurtzite phase by influencing the surface energy, which has a sizable contribution to the energetics of a nanocrystal. Our detailed analysis suggests that the binding of molecules on the nanocrystalline facets depends on the surface topology of the facets, the coordination of the surface atoms where the capping molecule is likely to attach, and the conformation of the capping molecule.
Resumo:
We report the synthesis of a novel class of low band gap copolymers based on anacenaphtho[1,2-b]quinoxaline core and oligothiophene derivatives acting as the acceptor and the donor moieties, respectively. The optical properties of the copolymers were characterized by ultraviolet-visible spectroscopy while the electrochemical properties were determined by cyclic voltammetry. The band gap of these polymers was found to be in the range 1.8-2.0 eV as calculated from the optical absorption band edge. X-ray diffraction measurements show weak pi-pi stacking interactions between the polymer chains. The hole mobility of the copolymers was evaluated using field-effect transistor measurements yielding values in the range 10(-5)-10(-3) cm(2)/Vs.
Resumo:
A density matrix renormalization group (DMRG) algorithm is presented for the Bethe lattice with connectivity Z = 3 and antiferromagnetic exchange between nearest-neighbor spins s = 1/2 or 1 sites in successive generations g. The algorithm is accurate for s = 1 sites. The ground states are magnetic with spin S(g) = 2(g)s, staggered magnetization that persists for large g > 20, and short-range spin correlation functions that decrease exponentially. A finite energy gap to S > S(g) leads to a magnetization plateau in the extended lattice. Closely similar DMRG results for s = 1/2 and 1 are interpreted in terms of an analytical three-site model.
Resumo:
A hydrothermal reaction of cobalt nitrate, 4,4'-oxybis(benzoic acid) (OBA), 1,2,4-triazole, and NaOH gave rise to a deep purple colored compound Co-4(triazolate)(2)(OBA)(3)], I, possessing Co-4 clusters. The Co-4 clusters are connected together through the tirazolate moieties forming a two-dimensional layer that closely resembles the TiS2 layer. The layers are pillared by the OBA units forming the three-dimensional structure. To the best of our knowledge, this is the first observation of a pillared TiS2 layer in a metal-organic framework compound. Magnetic studies in the temperature range 1.8-300 K indicate strong antiferromagetic interactions for Co-4 clusters. The structure as well as the magnetic behavior of the present compound has been compared with the previously reported related compound Co-2(mu 3-OH)(mu(2)-H2O)(pyrazine)(OBA)(OBAH)] prepared using pyrazine as the linker between the Co-4 clusters.
Resumo:
Three new solution processable quinoxaline based donor-acceptor-donor (D-A-D) type molecules have been synthesized for application in field effect transistors. These molecules were characterized by UV-visible spectroscopy, thermal gravimetric analysis, differential scanning calorimetry and cyclic voltammetry. DFT calculation gives deeper insight into the electronic structure of these molecules. The crystallinity and morphology features of thin film were investigated using X-ray diffraction. These molecules show liquid crystalline phase confirmed by DSC and optical polarizing microscopy. Investigation of their field effect transistor performance indicated that these molecules exhibited p-type mobility up to 9.7 x 10 (4) cm(2) V (1) s (1) and on/off ratio of 10(4). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Photoresponse of n-type indium-doped ZnO and a p-type polymer (PEDOT:PSS) heterojunction devices are studied, juxtaposed with the photoluminescence of the In-ZnO samples. In addition to the expected photoresponse in the ultraviolet, the heterojunctions exhibit significant photoresponse to the visible (532 nm). However, neither the doped ZnO nor PEDOT: PSS individually show any photoresponse to visible light. The sub-bandgap photoresponse of the heterojunction originates from visible photon mediated e-h generation between the In-ZnO valence band and localized states lying within the band gap. Though increased doping of In-ZnO has limited effect on the photoluminescence, it significantly diminishes the photoresponse. The study indicates that optimally doped devices are promising for the detection of wavelengths in selected windows in the visible. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4704655]
Resumo:
The metal organic frameworks (MOFs) have evolved to be an important family and a corner stone for research in the area of inorganic chemistry. The progress made since 2000 has attracted researchers from other disciplines to actively engage themselves in this area. This cooperative synergy of different scientific believes have provided important edge and spread to the chemistry of metal-organic frameworks. The ease of synthesis coupled with the observation of properties in the areas of catalysis, sorption, separation, luminescence, bioactivity, magnetism, etc., are a proof of this synergism. In this article, we present the recent developments in this area.