989 resultados para Organic Matter


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Seventeen sediment samples of Albian-Cenomanian to early Pliocene age from DSDP Hole 530A in the Angola Basin and six sediment samples of early Pliocene to late Pleistocene age from the Walvis Ridge were investigated by organic geochemical methods, including organic carbon determination, Rock-Eval pyrolysis, gas chromatography and combined gas chromatography/mass spectrometry of extractable hydrocarbons, and kerogen microscopy. The organic matter in all samples is strongly influenced by a terrigenous component from the nearby continent. The amount of marine organic matter present usually increases with the total organic carbon content, which reaches an extreme value of more than 10% in a Cenomanian black shale from Hole 530A. At Site 530 the extent of preservation of organic matter in the deep sea sediments is related to mass transport down the continental slope, whereas the high organic carbon contents in the sediments from Site 532 reflect both high bioproductivity in the Benguela upwelling regime and considerable supply of terrigenous organic matter. The maturation level of the organic matter is low in all samples.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We analyzed samples from ODP Holes 652A and 654A (Leg 107, Tyrrhenian Sea) for the amount, type, and thermal maturity of organic matter. The sediments encompass clastic and biogenic lithologies, which were deposited on the passive margin east of Sardinia since the late Miocene to the Pleistocene. Marine, hypersaline/evaporitic, lacustrine/riverine, and finally hemipelagic marine conditions with occasional anoxic(?) interludes gave rise to very diverse sedimentary facies. The majority of samples is lean in organic matter (<0.2% TOC). Notable exceptions are Tortonian sediments (TOC average 0.3%), Messinian oil shales from Core 107-652A-64R (up to 11% TOC), Messinian lacustrine/fluvial sediments from Hole 652A (TOC average 0.42%,), and Pleistocene sapropel samples (>2% TOC). The Messinian oil shale in Hole 652A appears to be the only mature hydrocarbon source rock. In general, Pliocene sediments are the leanest and least mature samples. Pleistocene and Pliocene samples derive organic matter from a marine source. In spite of obvious facies differences in the Messinian between the two sites, pyrolysis results are not conclusive in separating hypersaline facies of Site 654 from the fresh water facies of Site 652, because both appear to have received terrestrial organic tissue as the main component of TOC. It is apparent from the distribution of maximum pyrolysis temperatures that heat flow must have been considerably higher at Site 652 on the lower margin in the Messinian. Molecular maturity indices in lipid extracts substantiate the finding that the organic matter in Tortonian and Messinian samples from Hole 654A is immature, while thermal maturation is more advanced in coeval samples from Hole 652A. Analyses of lipid biomarkers showed that original odd-even predominance was preserved in alkanes and alkylcyclohexanes from Messinian samples in Hole 654A, while thermal maturation had removed any odd-even predominance in Hole 652A. Isomerization data of hopanes and steranes support these differences in thermal history for the two sites. Hopanoid distribution further suggests that petroleum impregnation from a deeper, more mature source resulted in the co-occurrence of immature and mature groups of pentacyclic biomarkers. Even though the presence of 4-methylsteranes may imply that dinoflagellates were a major source for organic matter in the oil shale interval of Hole 652, we did not find intact dinoflagellates or related nonskeletal algae during microscopic investigation of the organic matter in the fine laminations. Morphologically, the laminations resemble bacterial mats.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Redfield stoichiometry has proved a robust paradigm for the understanding of biological production and export in the ocean on a long-term and a large-scale basis. However, deviations of carbon and nitrogen uptake ratios from the Redfield ratio have been reported. A comprehensive data set including all carbon and nitrogen pools relevant to biological production in the surface ocean (DIC, DIN, DOC, DON, POC, PON) was used to calculate seasonal new production based on carbon and nitrogen uptake in summer along 20°W in the northeast Atlantic Ocean. The 20°W transect between 30 and 60°N covers different trophic states and seasonal stages of the productive surface layer, including early bloom, bloom, post-bloom and non-bloom situations. The spatial pattern has elements of a seasonal progression. We also calculated exported production, i.e., that part of seasonal new production not accumulated in particulate and dissolved pools, again separately for carbon and nitrogen. The pairs of estimates of 'seasonal new production' and 'exported production' allowed us to calculate the C : N ratios of these quantities. While suspended particulate matter in the mixed layer largely conforms to Redfield stoichiometry, marked deviations were observed in carbon and nitrogen uptake and export with progressing season or nutrient depletion. The spring system was characterized by nitrogen overconsumption and the oligotrophic summer system by a marked carbon overconsumption. The C : N ratios of seasonal new as well as exported production increase from early bloom values of 5-6 to values of 10-16 in the post-bloom/oligotrophic system. The summertime accumulation of nitrogen-poor dissolved organic matter can explain only part of this shift.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Organic geochemical and sedimentological investigations have been performed on sediments from ODP Sites 798 and 799 in order to reconstruct the depositional environment in the Japan Sea through late Cenozoic times. The Miocene to Quaternary sediments from Site 798 (Oki Ridge) and Site 799 (Kita-Yamato Trough) are characterized by high organic carbon contents of up to 6%. The organic matter is mainly a mixture of marine and terrigenous material. The dominant factors controlling marine organic carbon enrichment in the sediments of Hole 798A are probably an increased surface-water productivity and/or an increased preservation rate of organic carbon under anoxic deep-water conditions. In lower Pliocene sediments at Site 798 and Miocene to Quaternary sediments at Site 799, rapid burial of organic matter in turbidites may have been important, too. Remarkable cycles of dark, laminated sediments distinctly enriched in (marine) organic carbon by up to 5% and light, bioturbated to homogeneous sediments with reduced organic carbon contents indicate dramatic short-term paleoenvironmental variation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to assess the carbon flux through the deep-sea benthic boundary layer, sediment community oxygen consumption (SCOC) was measured in different months and years at the BIOTRANS area in the abyssal northeastern Atlantic. SCOC varied seasonally with a maximum in July/August. Evidence is given for a direct coupling between a substantial sedimentation of phytodetritus and the seasonal increase in SCOC. Rapid colonization, growth and decomposition rates indicate that the deep-sea benthic microbial and protozoan biota can react quickly to substantial falls of particulate organic matter. They seem to be the most important groups to generate seasonal changes in deep-sea benthic carbon flux rates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Perylene is present in high concentration in Paleogene sediments from the Sanriku-oki borehole of the Ministry of International Trade and Industry (MITI), northeastern Japan. The borehole penetrates a thick sequence of Late Cretaceous to Neogene sediments deposited under a range of conditions, including fluvial-deltaic and shallow marine. Organic petrological and geochemical data show the sediments to be rich in organic matter (OM) derived from higher plants. Biomarker analysis of aliphatic and aromatic hydrocarbons confirms a significant input from higher plants, with extracts dominated by numerous gymnosperm- and angiosperm-derived biomarkers such as diterpanes, oleanenes, des-A-triterpanes and their aromatized counterparts. The highest concentration of perylene occurs in Middle Eocene sediments deposited in a relatively reducing environment. Stable carbon isotope compositions show 13C enrichment in perylene compared to gymnosperm and angiosperm biomarkers, consistent with a fungal origin. This elevated abundance of sedimentary perylene could relate to a Paleogene continental climate where fungi probably flourished.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During most of the vegetation season from late May to early September large-sized diatom alga Proboscia alata forms local patches with high abundances and biomasses in different oceanographic domains of the eastern Bering Sea shelf. For 0-25 m layer average abundance and biomass of species in these patches are 700000 cells/l and 5 g/m**3 (wet weight), while corresponding estimates for the layer of maximal species concentrations are 40000000 cells/l and 38 g/m**3 (wet weight) or 1.6 g C/m**3. These levels of abundance and biomass are typical for the spring diatom bloom in the region. Outbursts of P. alata mass development are important for the carbon cycle in the pelagic zone of the shelf area in the summer season. The paradox of P. alata summertime blooms over the middle shelf lies in their occurrences against the background of the sharp seasonal pycnocline and deficiency in nutrients in the upper mixed layer. Duration of the outbursts in P. alata development is about two weeks and size of patches with high abundances can be as large as 200 km across. Degradation of the P. alata summertime outbursts may occur during 4-5 days. Rapid sinking of cells through the seasonal pycnocline results in intense transport of organic matter to bottom sediments. One of possible factors responsible for rapid degradation of the blooms is affect on the population by ectoparasitic flagellates. At terminal stages of the P. alata blooms percentage of infected cells can reach 70-99%.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A comparison was made of capability of two methods: photochemical oxidation and high-temperature catalytic combustion - to oxidize organic carbon in organic substances different in their element composition and in their degree of complexity. Results of measurements of dissolved organic carbon obtained by both of these methods in waters of the Black, Bering and Okhotsk Seas are presented. Varying oxidation degree of organic matter was shown to be dependent on the region and depth. A conclusion was made that the high-temperature catalytic combustion method was to be preferred for dissolved organic carbon determination due to its easier standardization, while values obtained by the wet-oxidation method may be influenced by a great number of factors that are difficult to be controlled.