1000 resultados para Orange emissions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transportation is seen as one of the major sources of CO2 pollutants nowadays. The impact of increased transport in retailing should not be underestimated. Most previous studies have focused on transportation and underlying trips, in general, while very few studies have addressed the specific affects that, for instance, intra-city shopping trips generate. Furthermore, most of the existing methods used to estimate emission are based on macro-data designed to generate national or regional inventory projections. There is a lack of studies using micro-data based methods that are able to distinguish between driver behaviour and the locational effects induced by shopping trips, which is an important precondition for energy efficient urban planning. The aim of this study is to implement a micro-data method to estimate and compare CO2 emission induced by intra-urban car travelling to a retail destination of durable goods (DG), and non-durable goods (NDG). We estimate the emissions from aspects of travel behaviour and store location. The study is conducted by means of a case study in the city of Borlänge, where GPS tracking data on intra-urban car travel is collected from 250 households. We find that a behavioural change during a trip towards a CO2 optimal travelling by car has the potential to decrease emission to 36% (DG), and to 25% (NDG) of the emissions induced by car-travelling shopping trips today. There is also a potential of reducing CO2 emissions induced by intra-urban shopping trips due to poor location by 54%, and if the consumer selected the closest of 8 existing stores, the CO2 emissions would be reduced by 37% of the current emission induced by NDG shopping trips.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International pressure to reduce greenhouse gas emissions has forced many countries to look beyond 'demand side' measures. Several industry sectors are examining indirect requirements for energy and other resources that involve significant greenhouse gas emissions. The operation of buildings is responsible for approximately one quarter of greenhouse gas emissions in Australia. Moreover, he construction process consumes vast quantities of raw materials and complex goods and services each year. Each of the processes required for the provision of these products requires energy, and most of this is fossil fuel based. A national model of greenhouse gas emissions is required for residential building construction, to indicate where emissions reduction strategies should focus. A disaggregated input-output model is developed for the Australian residential building construction sector, and recommendations are made about how this model can be used in the development of policies of emissions mitigation for both the sector and individual residential buildings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is commonly assumed that solar hot water systems save energy and reduce greenhouse emissions relative to conventional fossil fuel-powered systems. Very rarely has the life-cycle greenhouse emissions (including the embodied greenhouse emissions of manufacture) of solar hot water systems been analysed. The extent to which solar hot water systems can reduce emissions compared with conventional systems can be shown through a comparative life-cycle greenhouse emissions analysis. This method determined the time it takes for these net greenhouse emissions savings to occur, or the 'emissions payback period'. This paper presents the results of a life-cycle greenhouse emissions analysis of solar hot water systems in comparison with conventional hot water systems for a southern (Melbourne) and a northern (Brisbane) Australian city.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four kinds of woods used for residential heating in Australia were selected and burned under two burning conditions in a domestic wood heater installed in a laboratory. The selected wood species included pine (Pinus radiata), red gum (Eucalyptus camaldulensis), sugar gum (Eucalyptus cladocalyx) and yellow box (Eucalyptus melliodora). The two different burning conditions represented fast burning and slow burning, with the air inlet of the combustion chamber respectively ‘full open’ and ‘half open’. By sampling and analysing particulate and gaseous emissions from the burning of each load of wood under defined experimental conditions, PAHs emissions and their profiles in the particulate and gaseous phases were obtained. 16 species out of the 18 selected PAHs were detected. Of these, seven species were detected in the gaseous phase and most were lower molecular weight compounds. Similarly, more than 10 species of PAHs were detected in the particulate phase and these were mostly heavier molecular weight compounds. Under both burning conditions, emission levels for total PAHs and total genotoxic PAHs were the highest for pine and lowest for sugar gum, with red gum being the second highest, followed by yellow box. Using the specific sampling method, gaseous PAHs accounted for above 90% mass fraction of total PAHs in comparison to particulate PAHs (10%). The majority of the genotoxic PAHs were present in the particulate phase. PAHs emission levels in slow burning conditions were generally higher than those in fast burning conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodiesel manufactured from canola oil was blended with diesel and used as fuel in two diesel vehicles. This study aimed to test the emissions of diesel engines using blends of 100%, 80%, 60%, 40% , 20% biodiesel and 100% petroleum diesel, and characterise the particulate matter and gaseous emissions, with particular attention to levels of polycyclic aromatic hydrocarbons (PAHs) which are harmful to humans. A real time dust monitor was also used to monitor the continuous dust emissions during the entire testing cycle. The ECE(Euro 2) drive cycle was used for all emission tests. It was found that the particle concentration was up to 33% less when the engine burnt 100% biodiesel, compared to 100% diesel. Particle emission reduced with increased percentages of biodiesel in the fuel blends. Reductions of NOx, HC and CO were limited to about 10% when biodiesel was burned. Levels of CO2 emissions from the use of biodiesel and diesel were similar. Eighteen EPA priority PAHs were targeted, with only 6 species detected in the gaseous phase from the samples . 9 PAHs were detected in particulate phases at much lower levels than gaseous PAHs. Some marked reductions were observed for less toxic gaseous PAHs such as naphthalene when burning 100% biodiesel, but the particulate PAH emissions, which have more implications to adverse health effects, were virtually unchanged and did not show a statistically significant reduction. These findings are useful to gain an understanding of the emissions and environmental impacts of biodiesel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four kinds of Australian local wood species were burned in a domestic wood heater installed in a laboratory. The selected wood species include pine, red gum, yellow box and sugar gum, that are the most popular domestic fuel wood in Australia. Particulate matter emissions from burning of each load of wood were sampled isokinetically on filter media from the flue by standard stack emission sampling train. The particle laden filters then went for Gas Chromatography/ Mass Spectrometer (GC/MS) analysis to determine polycyclic aromatic hydrocarbons (PAHs) concentrations. The sampling was conducted under two different burning conditions – air inlet of the combustion chamber fully open and half open. Approximately 15 types of PAHs were detected. Emission factors were derived as microgram of PAHs /kg of wood burned. Total particulate emission factors were also obtained from gravimetric measurement before and after the sampling. PAH emission profiles for four species were generated from the results. Comparisons of emission factors have been conducted among different species of wood, as well as under different burning conditions, ie. fast burning and slowing burning. According to the derived emission factors, pine displayed the highest level of PAHs among the four species, followed by red gum and yellow box, whereas sugar gum showed the lowest level of PAHs. Emission factors were compared between each type of wood under two different burning conditions, the slow burning condition, which was air inlet half open, clearly showed higher PAH levels compared to the fast burning condition. Total PAH fractions on particulate matter were calculated and compared among wood types under two burning conditions. During the fast burning condition, red gum and pine have the higher percentage of PAH to total particulate matter emission than sugar gum and yellow box. When changed to slow burning, the PAH fraction on particulate matter are all increased with sugar gum having the largest increase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concern about the growth of greenhouse gas emissions in Victoria has prompted the introduction of legislation to improve the thermal performance of the residential building envelope. Unfortunately, the size of the house is not considered in the rating tool that underpins the legislation. The energy embodied in the constructional materials is also not considered although it too is directly related to the size of the house. Another intrinsic factor relating residential housing energy and greenhouse gas emissions is the location of the residence and the travel preferences of the homeowner. The relationship between the operational, embodied and travel energy associated with a typical residential scenario in Melbourne over the last 50 years is examined in this paper. The analysis found that by the year 2000, the energy associated with work-related travel (44%) now exceeds the operational energy (37%). In terms of greenhouse gas emissions, the contribution from travel energy is almost double that from operational energy (28%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell culture analyses of growth, morphology and apoptosis commonly require counting of different cell types stained with antibodies to discriminate between them. Previously, we reported the use of l-Leucine methyl ester (l-LME) to prepare purified cultures of type 1 astrocytes with minimal microglia, and staining by GFAP and CD antibodies, respectively. Here, we demonstrate a novel use of acridine orange (AO) for rapid discrimination between these cell types using fluorescence microscopy. AO accumulates in the lysosomes and also binds strongly to nuclear DNA and cytoplasmic/nucleolar RNA. Microglia may contain abundant lysosomes due to known roles in homeostasis and immune response. AO staining of lysosomes was tested at a range of concentrations, and 2.5 μg/mL was most suitable. In agreement with previous reports, microglia treated with AO showed very intense yellow, orange or red granular cytoplasmic staining of lysosomes. Microglia contain a substantially higher number of lysosomes than astrocytes, which have a variable amount. We measured the microglia population at 5.14 ± 0.50% in mixed cultures. Thus, these results show AO is a novel discriminatory marker, as microglia were easily observed and counted in clumps on top of the monolayer of astrocytes, providing a rapid alternative to time-consuming and costly antibody-based assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://digitalcommons.colby.edu/atlasofmaine2008/1016/thumbnail.jpg

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ratification of the Kyoto Protocol by most industrial nations will result in an international greenhouse emissions trading market by or before 2008. Calculating the quantity of embodied energy in commercial buildings has therefore taken on added significance because it is in the creation of energy that most greenhouse gas that causes global warming is released. For energy efficient commercial buildings in Australia, the embodied energy can typically represent between 10 and 20 years of operational energy. When greenhouse emissions trading is introduced in Australia the cost of energy will rise significantly, particularly electricity which relies primarily on burning fossil fuels for generation. This will affect not only the operating energy costs of buildings (light, power & heating/cooling) but also the cost of building materials and construction. Early estimates of the potential cost of future greenhouse emission permits in Australia vary between $IO/tonne to $180Itonne. This cost would be imposed primarily on the producers of energy and passed on by them to consumers via higher energy costs. For a typical commercial building this could lead to an increase in the total procurement cost of buildings of up to 20% due to the energy embodied during the construction or refurbishment of the building. To assist in evaluating these potential cost increases McKean & Park, Sinclair Knight Merz and Deakin University have developed a web-based Carbon Cost Calculator for commercial buildings.