949 resultados para Optimized cooling


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the many difficulties associated with the drafting of the Property Agents and Motor Dealers Act 2000 (Qld) (‘the Act’) is the operation of s 365. If the requirements imposed by this section concerning the return of the executed contract are not complied with, the buyer and the seller will not be bound by the relevant contract and the cooling-off period will not commence. In these circumstances, it is clear that a buyer’s offer may be withdrawn. However, the drafting of the Act creates a difficulty in that the ability of the seller to withdraw from the transaction prior to the parties being bound by the contract is not expressly provided by s 365. On one view, if the buyer is able to withdraw an offer at any time before receiving the prescribed contract documentation the seller also should not be bound by the contract until this time, notwithstanding that the seller may have been bound at common law. However, an alternative analysis is that the legislative omission to provide the seller with a right of withdrawal may be deliberate given the statutory focus on buyer protection. If this analysis were correct the seller would be denied the right to withdraw from the transaction after the contract was formed at common law (that is, after the seller had signed and the fact of signing had been communicated to the buyer).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heat transfer through the attics of buildings under realistic thermal forcing has been considered in this study. A periodic temperature boundary condition is applied on the sloping walls of the attic to show the basic flow features in the attic space over diurnal cycles. The numerical results reveal that, during the daytime heating stage, the flow in the attic space is stratified; whereas at the night-time cooling stage, the flow becomes unstable. A symmetrical solution is seen for relatively low Rayleigh numbers. However, as the Ra gradually increases, a transition occurs at a critical value of Ra. Above this critical value, an asymmetrical solution exhibiting a pitchfork bifurcation arises at the night-time. It is also found that the calculated heat transfer rate at the night-time cooling stage is much higher than that during the daytime heating stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As global warming entails new conditions for the built environment, the thermal and energy performance of existing buildings, which are designed based on current weather data, may become unclear and remain a great concern. Through building computer simulation and qualitative analysis of the weighted factor for the outdoor temperature impact on building energy and thermal performance, this paper investigates the sensitivity of different office building zoning to the potential global warming. A standard office building type is examined for all eight capital cities in Australia. Results show that comparing the middle and top floors, except for cool climate (i.e. Hobart), the ground floor appears to be the most sensitive to the effect of global warming and has the highest tendency for a overheating problem. From the analysis of the responses of different zone orientations to the outdoor air temperature increase, it is also found that there are widely varied responses between zone orientations, with South zone (in the southern hemisphere) being the most sensitive. With an increased external air temperature, the variation between different floors or zone orientations will become more significant, up to 53 percent increase of overheating hours in Darwin and 47 percent increase of cooling load in Hobart.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Information has no value unless it is accessible. Information must be connected together so a knowledge network can then be built. Such a knowledge base is a key resource for Internet users to interlink information from documents. Information retrieval, a key technology for knowledge management, guarantees access to large corpora of unstructured text. Collaborative knowledge management systems such as Wikipedia are becoming more popular than ever; however, their link creation function is not optimized for discovering possible links in the collection and the quality of automatically generated links has never been quantified. This research begins with an evaluation forum which is intended to cope with the experiments of focused link discovery in a collaborative way as well as with the investigation of the link discovery application. The research focus was on the evaluation strategy: the evaluation framework proposal, including rules, formats, pooling, validation, assessment and evaluation has proved to be efficient, reusable for further extension and efficient for conducting evaluation. The collection-split approach is used to re-construct the Wikipedia collection into a split collection comprising single passage files. This split collection is proved to be feasible for improving relevant passages discovery and is devoted to being a corpus for focused link discovery. Following these experiments, a mobile client-side prototype built on iPhone is developed to resolve the mobile Search issue by using focused link discovery technology. According to the interview survey, the proposed mobile interactive UI does improve the experience of mobile information seeking. Based on this evaluation framework, a novel cross-language link discovery proposal using multiple text collections is developed. A dynamic evaluation approach is proposed to enhance both the collaborative effort and the interacting experience between submission and evaluation. A realistic evaluation scheme has been implemented at NTCIR for cross-language link discovery tasks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural convection flow in a two-dimensional fluid saturated porous enclosure with localized heating from below, symmetrical cooling from the sides and the top and rest of the bottom walls are insulated, has been investigated numerically. Darcy’s law for porous media along with the energy equation based on the 1st law of thermodynamics has been considered. Implicit finite volume method with TDMA solver is used to solve the governing equations. Localized heating is simulated by a centrally located isothermal heat source on the bottom wall, and four different values of the dimensionless heat source length, 1/5, 2/5, 3/5 and 4/5 are considered. The effect of heat source length and the Rayleigh number on streamlines and isotherms are presented, as well as the variation of the local rate of heat transfer in terms of the local Nusselt number from the heated wall. Finally, the average Nusselt number at the heated part of the bottom wall has been shown against Rayleigh number for the non-dimensional heat source length.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Windows are one of the most significant elements in the design of buildings. Whether there are small punched openings in the facade or a completely glazed curtain wall, windows are usually a dominant feature of the building's exterior appearance. From the energy use perspective, windows may also be regarded as thermal holes for a building. Therefore, window design and selection must take both aesthetics and serviceability into consideration. In this paper, using building computer simulation techniques, the effects of glass types on the thermal and energy performance of a sample air-conditioned office building in Australia are studied. It is found that a glass type with lower shading coefficient will have a lower building cooling load and total energy use. Through the comparison of results between current and future weather scenarios, it is identified that the pattern found from the current weather scenario would also exist in the future weather scenario, although the scale of change would become smaller. The possible implication of glazing selection in face of global warming is also examined. It is found that compared with its influence on building thermal performance, its influence on the building energy use is relatively small or insignificant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current complication rates for adolescent spinal deformity surgery are unacceptably high and in order to improve patient outcomes, the development of a simulation tool which enables the surgical strategy for an individual patient to be optimized is necessary. In this chapter we will present our work to date in developing and validating patient-specific modeling techniques to simulate and predict patient outcomes for surgery to correct adolescent scoliosis deformity. While these simulation tools are currently being developed to simulate adolescent idiopathic scoliosis patients, they will have broader applications in simulating spinal disorders and optimizing surgical planning for other types of spine surgery. Our studies to date have highlighted the need for not only patient-specific anatomical data, but also patient-specific tissue parameters and biomechanical loading data, in order to accurately predict the physiological behaviour of the spine. Even so, patient-specific computational models are the state-of-the art in computational biomechanics and offer much potential as a pre-operative surgical planning tool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The natural convection thermal boundary layer adjacent to an inclined flat plate and inclined walls of an attic space subject to instantaneous and ramp heating and cooling is investigated. A scaling analysis has been performed to describe the flow behaviour and heat transfer. Major scales quantifying the flow velocity, flow development time, heat transfer and the thermal and viscous boundary layer thicknesses at different stages of the flow development are established. Scaling relations of heating-up and cooling-down times and heat transfer rates have also been reported for the case of attic space. The scaling relations have been verified by numerical simulations over a wide range of parameters. Further, a periodic temperature boundary condition is also considered to show the flow features in the attic space over diurnal cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Materials with one-dimensional (1D) nanostructure are important for catalysis. They are the preferred building blocks for catalytic nanoarchitecture, and can be used to fabricate designer catalysts. In this thesis, one such material, alumina nanofibre, was used as a precursor to prepare a range of nanocomposite catalysts. Utilising the specific properties of alumina nanofibres, a novel approach was developed to prepare macro-mesoporous nanocomposites, which consist of a stacked, fibrous nanocomposite with a core-shell structure. Two kinds of fibrous ZrO2/Al2O3 and TiO2/Al2O3 nanocomposites were successfully synthesised using boehmite nanofibers as a hard temperate and followed by a simple calcination. The alumina nanofibres provide the resultant nanocomposites with good thermal stability and mechanical stability. A series of one-dimensional (1D) zirconia/alumina nanocomposites were prepared by the deposition of zirconium species onto the 3D framework of boehmite nanofibres formed by dispersing boehmite nanofibres into a butanol solution, followed by calcination at 773 K. The materials were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and Fourier Transform Infrared spectroscopy (FT-IR). The results demonstrated that when the molar percentage, X, X=100*Zr/(Al+Zr), was > 30%, extremely long ZrO2/Al2O3 composite nanorods with evenly distributed ZrO2 nanocrystals formed on their surface. The stacking of such nanorods gave rise to a new kind of macroporous material without the use of any organic space filler\template or other specific drying techniques. The mechanism for the formation of these long ZrO2/Al2O3 composite nanorods is proposed in this work. A series of solid-superacid catalysts were synthesised from fibrous ZrO2/Al2O3 core and shell nanocomposites. In this series, the zirconium molar percentage was varied from 2 % to 50 %. The ZrO2/Al2O3 nanocomposites and their solid superacid counterparts were characterised by a variety of techniques including 27Al MAS-NMR, SEM, TEM, XPS, Nitrogen adsorption and Infrared Emission Spectroscopy. NMR results show that the interaction between zirconia species and alumina strongly correlates with pentacoordinated aluminium sites. This can also be detected by the change in binding energy of the 3d electrons of the zirconium. The acidity of the obtained superacids was tested by using them as catalysts for the benzolyation of toluene. It was found that a sample with a 50 % zirconium molar percentage possessed the highest surface acidity equalling that of pristine sulfated zirconia despite the reduced mass of zirconia. Preparation of hierarchically macro-mesoporous catalyst by loading nanocrystallites on the framework of alumina bundles can provide an alternative system to design advanced nanocomposite catalyst with enhanced performance. A series of macro-mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesised. The materials were calcined at 723 K and were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and UV-visible spectroscopy (UV-visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100oC), which makes it possible to synthesize such materials on industrial scale. The performances of a series of resultant TiO2/Al2O3 nanocomposites with different morphologies were evaluated as a photocatalyst for the phenol degradation under UV irradiation. The photocatalyst (Ti/Al =2) with fibrous morphology exhibits higher activity than that of the photocatalyst with microspherical morphology which indeed has the highest Ti to Al molar ratio (Ti/Al =3) in the series of as-synthesised hierarchical TiO2/Al2O3 nanocomposites. Furthermore, the photocatalytic performances, for the fibrous nanocomposites with Ti/Al=2, were optimized by calcination at elevated temperatures. The nanocomposite prepared by calcination at 750oC exhibits the highest catalytic activity, and its performance per TiO2 unit is very close to that of the gold standard, Degussa P 25. This work also emphasizes two advantages of the nanocomposites with fibrous morphology: (1) the resistance to sintering, and (2) good catalyst recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In face of the increasing concern on global warming and climate change, the interests in the utilization of solar energy for building operation are also rapidly growing. In this paper, the importance of using renewable energy in building operations is first discussed. The potential use of solar energy is then reviewed. Possible applications of solar energy in building operation are also discussed, including the use of solar energy in the forms of daylighting, hot water heating, space heating and cooling and building-integrated photovoltaics. Finally, the research activities in the utilization of solar energy for space cooling at QUT are highlighted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The small element spacing of compact multiport arrays introduces strong mutual coupling between the antenna ports. Due to this coupling, the input impedance of the array changes when elements excitations are varied, and consequently, the array cannot be matched for an arbitrary excitation. Decoupling networks have in the past been used to provide an additional connection between antenna ports in order to cancel the coupling between elements. An alternative approach is to design the antenna so that each port does not excite a single element, but all elements simultaneously instead. The geometry of the antenna is optimized so that this direct excitation of elements counteracts the mutual coupling, thus yielding decoupled ports. This paper describes the design of such a 4-port antenna.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates energy saving potential of commercial building by living wall and green façade system using Envelope Thermal Transfer Value (ETTV) equation in Sub-tropical climate of Australia. Energy saving of four commercial buildings was quantified by applying living wall and green façade system to the west facing wall. A field experimental facility, from which temperature data of living wall system was collected, was used to quantify wall temperatures and heat gain under controlled conditions. The experimental parameters were accumulated with extensive data of existing commercial building to quantify energy saving. Based on temperature data of living wall system comprised of Australian native plants, equivalent temperature of living wall system has been computed. Then, shading coefficient of plants in green façade system has been included in mathematical equation and in graphical analysis. To minimize the air-conditioned load of commercial building, therefore to minimize the heat gain of commercial building, an analysis of building heat gain reduction by living wall and green façade system has been performed. Overall, cooling energy performance of commercial building before and after living wall and green façade system application has been examined. The quantified energy saving showed that only living wall system on opaque part of west facing wall can save 8-13 % of cooling energy consumption where as only green façade system on opaque part of west facing wall can save 9.5-18% cooling energy consumption of commercial building. Again, green façade system on fenestration system on west facing wall can save 28-35 % of cooling energy consumption where as combination of both living wall on opaque part of west facing wall and green façade on fenestration system on west facing wall can save 35-40% cooling energy consumption of commercial building in sub-tropical climate of Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study demonstrates the possibility of using an absorption chiller to produce chilled water for air conditioning, and at the same time recover the rejected heat producing domestic hot water. The absorption chiller considered for this application has been sized to suit a standard household and uses a solution of ammonia and water running on hot water at a temperature ranging from 80 - 120°C produced by thermal solar panels. The system consists of five main components: generator, rectifier, condenser, evaporator and absorber, and is divided in two sections at two different pressures. The section at higher pressure includes the generator, rectifier and condenser whereas the section at lower pressure includes the evaporator and the absorber. Heat in this type of system is usually rejected to the environment from the condenser, rectifier and absorber through a cooling tower or air cooler exchanger. In this paper we describe how to recover this heat to create domestic hot water by providing a quantitative evaluation of the amount of energy recovered by the proposed system, if used in the Australian region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As global warming entails new conditions for the built environment, the thermal behavior of existing air conditioned office buildings, which are typically designed based on current weather data, may also change. Through building computer simulations, this paper evaluates the impact of global warming on the design and performance of air-conditioned office buildings in Australia, including the increased cooling loads imposed by potential global warming and probable indoor temperature increases due to possible undersized air-conditioning system, as well as the possible change in energy use and CO2 emission of Australian office buildings. It is found that the existing office buildings would generally be able to adapt to the increasing warmth of 2030 year Low and High scenarios projections and 2070 year Low scenario projection. However, for the 2070 year High scenario, the study indicates that the existing office buildings, in all capital cities except for Hobart, will suffer from overheating problems. If the energy source is assumed to be the electricity, it is found that in comparison with current weather scenario, the increased energy uses would translate into the increase of CO2 emissions by 0 to 34.6 kg CO2 equivalent/m2, varying with different future weather scenarios and with different locations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global warming can have a significant impact on building energy performance and indoor thermal environment, as well as the health and productivity of people living and working inside them. Through the building simulation technique, this paper investigates the adaptation potential of different selections of building physical properties to increased outdoor temperature in Australia. It is found that overall, an office building with lower insulation level, smaller window to wall ratio and/or a glass type with lower shading coefficient, and lower internal load density will have the effect of lowering building cooling load and total energy use, and therefore have a better potential to adapt to the warming external climate. Compared with clear glass, it is shown that the use of reflective glass for the sample building with WWR being 0.5 reduces the building cooling load by more than 12%. A lower internal load can also have a significant impact on the reduction of building cooling load, as well as the building energy use. Through the comparison of results between current and future weather scenarios, it is found that the patterns found in the current weather scenario also exist in the future weather scenarios, but to a smaller extent.