995 resultados para Optimization software
Resumo:
Objectives: Therapeutic drug monitoring (TDM) aims at optimizing treatment by individualizing dosage regimen based on blood concentrations measurement. Maintaining concentrations within a target range requires pharmacokinetic (PK) and clinical capabilities. Bayesian calculation represents a gold standard in TDM approach but requires computing assistance. The aim of this benchmarking was to assess and compare computer tools designed to support TDM clinical activities.¦Methods: Literature and Internet were searched to identify software. Each program was scored against a standardized grid covering pharmacokinetic relevance, user-friendliness, computing aspects, interfacing, and storage. A weighting factor was applied to each criterion of the grid to consider its relative importance. To assess the robustness of the software, six representative clinical vignettes were also processed through all of them.¦Results: 12 software tools were identified, tested and ranked. It represents a comprehensive review of the available software characteristics. Numbers of drugs handled vary from 2 to more than 180, and integration of different population types is available for some programs. Nevertheless, 8 programs offer the ability to add new drug models based on population PK data. 10 computer tools incorporate Bayesian computation to predict dosage regimen (individual parameters are calculated based on population PK models). All of them are able to compute Bayesian a posteriori dosage adaptation based on a blood concentration while 9 are also able to suggest a priori dosage regimen, only based on individual patient covariates. Among those applying Bayesian analysis, MM-USC*PACK uses a non-parametric approach. The top 2 programs emerging from this benchmark are MwPharm and TCIWorks. Others programs evaluated have also a good potential but are less sophisticated or less user-friendly.¦Conclusions: Whereas 2 software packages are ranked at the top of the list, such complex tools would possibly not fit all institutions, and each program must be regarded with respect to individual needs of hospitals or clinicians. Programs should be easy and fast for routine activities, including for non-experienced users. Although interest in TDM tools is growing and efforts were put into it in the last years, there is still room for improvement, especially in terms of institutional information system interfacing, user-friendliness, capability of data storage and automated report generation.
Resumo:
This study aims to improve the accuracy and usability of Iowa Falling Weight Deflectometer (FWD) data by incorporating significant enhancements into the fully-automated software system for rapid processing of the FWD data. These enhancements include: (1) refined prediction of backcalculated pavement layer modulus through deflection basin matching/optimization, (2) temperature correction of backcalculated Hot-Mix Asphalt (HMA) layer modulus, (3) computation of 1993 AASHTO design guide related effective SN (SNeff) and effective k-value (keff ), (4) computation of Iowa DOT asphalt concrete (AC) overlay design related Structural Rating (SR) and kvalue (k), and (5) enhancement of user-friendliness of input and output from the software tool. A high-quality, easy-to-use backcalculation software package, referred to as, I-BACK: the Iowa Pavement Backcalculation Software, was developed to achieve the project goals and requirements. This report presents theoretical background behind the incorporated enhancements as well as guidance on the use of I-BACK developed in this study. The developed tool, I-BACK, provides more fine-tuned ANN pavement backcalculation results by implementation of deflection basin matching optimizer for conventional flexible, full-depth, rigid, and composite pavements. Implementation of this tool within Iowa DOT will facilitate accurate pavement structural evaluation and rehabilitation designs for pavement/asset management purposes. This research has also set the framework for the development of a simplified FWD deflection based HMA overlay design procedure which is one of the recommended areas for future research.
Resumo:
This study aims to improve the accuracy and usability of Iowa Falling Weight Deflectometer (FWD) data by incorporating significant enhancements into the fully-automated software system for rapid processing of the FWD data. These enhancements include: (1) refined prediction of backcalculated pavement layer modulus through deflection basin matching/optimization, (2) temperature correction of backcalculated Hot-Mix Asphalt (HMA) layer modulus, (3) computation of 1993 AASHTO design guide related effective SN (SNeff) and effective k-value (keff ), (4) computation of Iowa DOT asphalt concrete (AC) overlay design related Structural Rating (SR) and kvalue (k), and (5) enhancement of user-friendliness of input and output from the software tool. A high-quality, easy-to-use backcalculation software package, referred to as, I-BACK: the Iowa Pavement Backcalculation Software, was developed to achieve the project goals and requirements. This report presents theoretical background behind the incorporated enhancements as well as guidance on the use of I-BACK developed in this study. The developed tool, I-BACK, provides more fine-tuned ANN pavement backcalculation results by implementation of deflection basin matching optimizer for conventional flexible, full-depth, rigid, and composite pavements. Implementation of this tool within Iowa DOT will facilitate accurate pavement structural evaluation and rehabilitation designs for pavement/asset management purposes. This research has also set the framework for the development of a simplified FWD deflection based HMA overlay design procedure which is one of the recommended areas for future research.
Resumo:
One major methodological problem in analysis of sequence data is the determination of costs from which distances between sequences are derived. Although this problem is currently not optimally dealt with in the social sciences, it has some similarity with problems that have been solved in bioinformatics for three decades. In this article, the authors propose an optimization of substitution and deletion/insertion costs based on computational methods. The authors provide an empirical way of determining costs for cases, frequent in the social sciences, in which theory does not clearly promote one cost scheme over another. Using three distinct data sets, the authors tested the distances and cluster solutions produced by the new cost scheme in comparison with solutions based on cost schemes associated with other research strategies. The proposed method performs well compared with other cost-setting strategies, while it alleviates the justification problem of cost schemes.
Resumo:
The Office of Special Investigations at Iowa Department of Transportation (DOT) collects FWD data on regular basis to evaluate pavement structural conditions. The primary objective of this study was to develop a fully-automated software system for rapid processing of the FWD data along with a user manual. The software system automatically reads the FWD raw data collected by the JILS-20 type FWD machine that Iowa DOT owns, processes and analyzes the collected data with the rapid prediction algorithms developed during the phase I study. This system smoothly integrates the FWD data analysis algorithms and the computer program being used to collect the pavement deflection data. This system can be used to assess pavement condition, estimate remaining pavement life, and eventually help assess pavement rehabilitation strategies by the Iowa DOT pavement management team. This report describes the developed software in detail and can also be used as a user-manual for conducting simulation studies and detailed analyses. *********************** Large File ***********************
Resumo:
Substantial investment in climate change research has led to dire predictions of the impacts and risks to biodiversity. The Intergovernmental Panel on Climate Change fourth assessment report(1) cites 28,586 studies demonstrating significant biological changes in terrestrial systems(2). Already high extinction rates, driven primarily by habitat loss, are predicted to increase under climate change(3-6). Yet there is little specific advice or precedent in the literature to guide climate adaptation investment for conserving biodiversity within realistic economic constraints(7). Here we present a systematic ecological and economic analysis of a climate adaptation problem in one of the world's most species-rich and threatened ecosystems: the South African fynbos. We discover a counterintuitive optimal investment strategy that switches twice between options as the available adaptation budget increases. We demonstrate that optimal investment is nonlinearly dependent on available resources, making the choice of how much to invest as important as determining where to invest and what actions to take. Our study emphasizes the importance of a sound analytical framework for prioritizing adaptation investments(4). Integrating ecological predictions in an economic decision framework will help support complex choices between adaptation options under severe uncertainty. Our prioritization method can be applied at any scale to minimize species loss and to evaluate the robustness of decisions to uncertainty about key assumptions.
Resumo:
Los agentes de software en la era de las redes globales son una herramienta vital para superar el fenómeno llamado "sobrecarga de información". El grado de madurez alcanzado en esta tecnología permite que hoy se puedan ver aplicaciones concretas funcionado en organizaciones, como así también en el escritorio del usuario hogareño. El objetivo de este trabajo es presentar una revisión bibliográfica sobre la tecnología de agentes de software, con orientación a los modelos que permiten gerenciar la sobrecarga de información.
Resumo:
Apresenta um método para avaliação e seleção de softwares de automação de bibliotecas. Consiste na atribuição de critérios e cálculos estatísticos em uma lista elaborada para a seleção e avaliação deste tipo de software. Este método pretender servir como instrumento de apoio à tomada de decisão no processo de escolha do software mais adequado às necessidades de cada instituição. Este trabalho foi motivado por uma demanda do Instituto Brasileiro de Informação em Ciência e Tecnologia (IBICT) para automatizar a sua biblioteca.
Resumo:
Lymphatic vessels transport fluid, antigens, and immune cells to the lymph nodes to orchestrate adaptive immunity and maintain peripheral tolerance. Lymphangiogenesis has been associated with inflammation, cancer metastasis, autoimmunity, tolerance and transplant rejection, and thus, targeted lymphatic ablation is a potential therapeutic strategy for treating or preventing such events. Here we define conditions that lead to specific and local closure of the lymphatic vasculature using photodynamic therapy (PDT). Lymphatic-specific PDT was performed by irradiation of the photosensitizer verteporfin that effectively accumulates within collecting lymphatic vessels after local intradermal injection. We found that anti-lymphatic PDT induced necrosis of endothelial cells and pericytes, which preceded the functional occlusion of lymphatic collectors. This was specific to lymphatic vessels at low verteporfin dose, while higher doses also affected local blood vessels. In contrast, light dose (fluence) did not affect blood vessel perfusion, but did affect regeneration time of occluded lymphatic vessels. Lymphatic vessels eventually regenerated by recanalization of blocked collectors, with a characteristic hyperplasia of peri-lymphatic smooth muscle cells. The restoration of lymphatic function occurred with minimal remodeling of non-lymphatic tissue. Thus, anti-lymphatic PDT allows control of lymphatic ablation and regeneration by alteration of light fluence and photosensitizer dose.
Resumo:
Purpose: Many retinal degenerations result from defective retina-specific gene expressions. Thus, it is important to understand how the expression of a photoreceptor-specific gene is regulated in vivo in order to achieve successful gene therapy. The present study aims to design an AAV2/8 vector that can regulate the transcript level in a physiological manner to replace missing PDE6b in Rd1 and Rd10 mice. In previous studies (Ogieta, et al., 2000), the short 5' flanking sequence of the human PDE6b gene (350 bp) was shown to be photoreceptor-specific in transgenic mice. However, the efficiency and specificity of the 5' flanking region of the human PDE6b was not investigated in the context of gene therapy during retinal degeneration. In this study, two different sequences of the 5' flanking region of the human PDE6b gene were studied as promoter elements and their expression will be tested in wild type and diseased retinas (Rd 10 mice).Methods: Two 5' flanking fragments of the human PDE6b gene: (-93 to +53 (150 bp) and -297 to +53 (350 bp)) were cloned in different plasmids in order to check their expression in vitro and in vivo by constructing an AAV2/8 vector. These elements drove the activity of either luciferase (pGL3 plasmids) or EGFP. jetPEI transfection in Y 79 cells was used to evaluate gene expression through luciferase activity. Constructs encoding EGFP under the control of the two promoters were performed in AAV2.1-93 (or 297)-EGFP plasmids to produce AAV2/8 vectors.Results: When pGL3-93 (150 bp) or pGL3-297 (350 bp) were transfected in the Y-79 cells, the smaller fragment (150 bp) showed higher gene expression compared to the 350 bp element and to the SV40 control, as previously reported. The 350 bp drove similar levels of expression when compared to the SV40 promoter. In view of these results, the fragments (150 bp or 350 bp) were integrated into the AAV2.1-EGFP plasmid to produce AAV2/8 vector, and we are currently evaluating the efficiency and specificity of the produced constructs in vivo in normal and diseased retinas.Conclusions: Comparisons of these vectors with vectors bearing ubiquitous promoters should reveal which construct is the most suitable to drive efficient and specific gene expression in diseased retinas in order to restore a normal function on the long term.
Resumo:
Our docking program, Fitted, implemented in our computational platform, Forecaster, has been modified to carry out automated virtual screening of covalent inhibitors. With this modified version of the program, virtual screening and further docking-based optimization of a selected hit led to the identification of potential covalent reversible inhibitors of prolyl oligopeptidase activity. After visual inspection, a virtual hit molecule together with four analogues were selected for synthesis and made in one-five chemical steps. Biological evaluations on recombinant POP and FAPα enzymes, cell extracts, and living cells demonstrated high potency and selectivity for POP over FAPα and DPPIV. Three compounds even exhibited high nanomolar inhibitory activities in intact living human cells and acceptable metabolic stability. This small set of molecules also demonstrated that covalent binding and/or geometrical constraints to the ligand/protein complex may lead to an increase in bioactivity.