935 resultados para Optical signal and image processing device
Resumo:
Nonlinear systems with periodic variations of nonlinearity and/or dispersion occur in a variety of physical problems and engineering applications. The mathematical concept of dispersion managed solitons already has made an impact on the development of fibre communications, optical signal processing and laser science. We overview here the field of the dispersion managed solitons starting from mathematical theories of Hamiltonian and dissipative systems and then discuss recent advances in practical implementation of this concept in fibre-optics and lasers.
Resumo:
The knowledge of insulation debris generation and transport gains in importance regarding reactor safety research for PWR and BWR. The insulation debris released near the break consists of a mixture of very different fibres and particles concerning size, shape, consistence and other properties. Some fraction of the released insulation debris will be transported into the reactor sump where it may affect emergency core cooling. Experiments are performed to blast original samples of mineral wool insulation material by steam under original thermal-hydraulic break conditions of BWR. The gained fragments are used as initial specimen for further experiments at acrylic glass test facilities. The quasi ID-sinking behaviour of the insulation fragments are investigated in a water column by optical high speed video techniques and methods of image processing. Drag properties are derived from the measured sinking velocities of the fibres and observed geometric parameters for an adequate CFD modelling. In the test rig "Ring line-II" the influence of the insulation material on the head loss is investigated for debris loaded strainers. Correlations from the filter bed theory are adapted with experimental results and are used to model the flow resistance depending on particle load, filter bed porosity and parameters of the coolant flow. This concept also enables the simulation of a particular blocked strainer with CFDcodes. During the ongoing work further results of separate effect and integral experiments and the application and validation of the CFD-models for integral test facilities and original containment sump conditions are expected.
Resumo:
We present a comparative study of the influence of dispersion induced phase noise for n-level PSK systems. From the analysis, we conclude that the phase noise influence for classical homodyne/heterodyne PSK systems is entirely determined by the modulation complexity (expressed in terms of constellation diagram) and the analogue demodulation format. On the other hand, the use of digital signal processing (DSP) in homodyne/intradyne systems renders a fiber length dependence originating from the generation of equalization enhanced phase noise. For future high capacity systems, high constellations must be used in order to lower the symbol rate to practically manageable speeds, and this fact puts severe requirements to the signal and local oscillator (LO) linewidths. Our results for the bit-error-rate (BER) floor caused by the phase noise influence in the case of QPSK, 16PSK and 64PSK systems outline tolerance limitations for the LO performance: 5 MHz linewidth (at 3-dB level) for 100 Gbit/s QPSK; 1 MHz for 400 Gbit/s QPSK; 0.1 MHz for 400 Gbit/s 16PSK and 1 Tbit/s 64PSK systems. This defines design constrains for the phase noise impact in distributed-feed-back (DFB) or distributed-Bragg-reflector (DBR) semiconductor lasers, that would allow moving the system capacity from 100 Gbit/s system capacity to 400 Gbit/s in 3 years (1 Tbit/s in 5 years). It is imperative at the same time to increase the analogue to digital conversion (ADC) speed such that the single quadrature symbol rate goes from today's 25 GS/s to 100 GS/s (using two samples per symbol). © 2014 by Walter de Gruyter Berlin/Boston.
Resumo:
In this paper, we analyze the sensitivities of coherent optical receivers and microwave receivers. We derive theoretical limits of signal-to-noise ratio and bit error rate. By applying a generic approach to a broad range of receivers, we can compare their performance directly. Other publications have considered some of these receivers. However, their diverse nature obscures the big picture. Using our results as a unifying platform, previous publications can be compared and discrepancies between them identified.
Resumo:
A vision system is applied to full-field displacements and deformation measurements in solid mechanics. A speckle like pattern is preliminary formed on the surface under investigation. To determine displacements field of one speckle image with respect to a reference speckle image, sub-images, referred to Zones Of Interest (ZOI) are considered. The field is obtained by matching a ZOI in the reference image with the respective ZOI in the moved image. Two image processing techniques are used for implementing the matching procedure: – cross correlation function and minimum mean square error (MMSE) of the ZOI intensity distribution. The two algorithms are compared and the influence of the ZOI size on the accuracy of measurements is studied.
Resumo:
This article presents the principal results of the doctoral thesis “Recognition of neume notation in historical documents” by Lasko Laskov (Institute of Mathematics and Informatics at Bulgarian Academy of Sciences), successfully defended before the Specialized Academic Council for Informatics and Mathematical Modelling on 07 June 2010.
Resumo:
We propose an artificial neural network (ANN) equalizer for transmission performance enhancement of coherent optical OFDM (C-OOFDM) signals. The ANN equalizer showed more efficiency in combating both chromatic dispersion (CD) and single-mode fibre (SMF)-induced non-linearities compared to the least mean square (LMS). The equalizer can offer a 1.5 dB improvement in optical signal-to-noise ratio (OSNR) compared to LMS algorithm for 40 Gbit/s C-OOFDM signals when considering only CD. It is also revealed that ANN can double the transmission distance up to 320 km of SMF compared to the case of LMS, providing a nonlinearity tolerance improvement of ∼0.7 dB OSNR.
Resumo:
Record small and low loss slow light optical signal processing devices are proposed and demonstrated using the recently invented Surface Nanoscale Axial Photonics (SNAP) technology.
Resumo:
Miniature slow light Surface Nanoscale Axial Photonics (SNAP) devices are reviewed. The fabrication precision of these devices is two orders of magnitude higher and the transmission losses are two orders of magnitude smaller than for any of the previously reported technologies for fabrication of miniature photonic circuits. In the first part of the report, a SNAP bottle resonator with a few nm high radius variation is demonstrated as the record small, slow light, and low loss 2.6 ns dispersionless delay line of 100 ps pulses. Next, a record small SNAP bottle resonator exhibiting the 20 ns/nm dispersion compensation of 100 ps pulses is demonstrated. In the second part of the report, the prospects of the SNAP technology in applications to telecommunications, optical signal processing, quantum computing, and microfluidics are discussed. © 2014 IEEE.
Resumo:
A high resolution optical time domain reflectometry (OTDR) based on an all-fiber chaotic source is demonstrated. We analyze the key factors limiting the operational range of such an OTDR, e.g., integral Rayleigh backscattering and the fiber loss, which degrade the optical signal to noise ratio at the receiver side, and then the guideline for counter-act such signal fading is discussed. The experimentally demonstrated correlation OTDR presents ability of 100km sensing range and 8.2cm spatial resolution (1.2 million resolved points), as a verification of the theoretical analysis. To the best of our knowledge, this is the first time that correlation OTDR measurement is performed over such a long distance with such high precision.
Resumo:
We show that optical and electrical phase conjugation enable effective nonlinear compensation, The impact of polarization mode dispersion and finite processing bandwidth on the ultimate limits are also considered.
Resumo:
We propose a long range, high precision optical time domain reflectometry (OTDR) based on an all-fiber supercontinuum source. The source simply consists of a CW pump laser with moderate power and a section of fiber, which has a zero dispersion wavelength near the laser's central wavelength. Spectrum and time domain properties of the source are investigated, showing that the source has great capability in nonlinear optics, such as correlation OTDR due to its ultra-wide-band chaotic behavior, and mm-scale spatial resolution is demonstrated. Then we analyze the key factors limiting the operational range of such an OTDR, e. g., integral Rayleigh backscattering and the fiber loss, which degrades the optical signal to noise ratio at the receiver side, and then the guideline for counter-act such signal fading is discussed. Finally, we experimentally demonstrate a correlation OTDR with 100km sensing range and 8.2cm spatial resolution (1.2 million resolved points), as a verification of theoretical analysis.
Resumo:
The objectives of this research are to analyze and develop a modified Principal Component Analysis (PCA) and to develop a two-dimensional PCA with applications in image processing. PCA is a classical multivariate technique where its mathematical treatment is purely based on the eigensystem of positive-definite symmetric matrices. Its main function is to statistically transform a set of correlated variables to a new set of uncorrelated variables over $\IR\sp{n}$ by retaining most of the variations present in the original variables.^ The variances of the Principal Components (PCs) obtained from the modified PCA form a correlation matrix of the original variables. The decomposition of this correlation matrix into a diagonal matrix produces a set of orthonormal basis that can be used to linearly transform the given PCs. It is this linear transformation that reproduces the original variables. The two-dimensional PCA can be devised as a two successive of one-dimensional PCA. It can be shown that, for an $m\times n$ matrix, the PCs obtained from the two-dimensional PCA are the singular values of that matrix.^ In this research, several applications for image analysis based on PCA are developed, i.e., edge detection, feature extraction, and multi-resolution PCA decomposition and reconstruction. ^
Resumo:
Physiological signals, which are controlled by the autonomic nervous system (ANS), could be used to detect the affective state of computer users and therefore find applications in medicine and engineering. The Pupil Diameter (PD) seems to provide a strong indication of the affective state, as found by previous research, but it has not been investigated fully yet. ^ In this study, new approaches based on monitoring and processing the PD signal for off-line and on-line affective assessment ("relaxation" vs. "stress") are proposed. Wavelet denoising and Kalman filtering methods are first used to remove abrupt changes in the raw Pupil Diameter (PD) signal. Then three features (PDmean, PDmax and PDWalsh) are extracted from the preprocessed PD signal for the affective state classification. In order to select more relevant and reliable physiological data for further analysis, two types of data selection methods are applied, which are based on the paired t-test and subject self-evaluation, respectively. In addition, five different kinds of the classifiers are implemented on the selected data, which achieve average accuracies up to 86.43% and 87.20%, respectively. Finally, the receiver operating characteristic (ROC) curve is utilized to investigate the discriminating potential of each individual feature by evaluation of the area under the ROC curve, which reaches values above 0.90. ^ For the on-line affective assessment, a hard threshold is implemented first in order to remove the eye blinks from the PD signal and then a moving average window is utilized to obtain the representative value PDr for every one-second time interval of PD. There are three main steps for the on-line affective assessment algorithm, which are preparation, feature-based decision voting and affective determination. The final results show that the accuracies are 72.30% and 73.55% for the data subsets, which were respectively chosen using two types of data selection methods (paired t-test and subject self-evaluation). ^ In order to further analyze the efficiency of affective recognition through the PD signal, the Galvanic Skin Response (GSR) was also monitored and processed. The highest affective assessment classification rate obtained from GSR processing is only 63.57% (based on the off-line processing algorithm). The overall results confirm that the PD signal should be considered as one of the most powerful physiological signals to involve in future automated real-time affective recognition systems, especially for detecting the "relaxation" vs. "stress" states.^