965 resultados para Oocytary maturation
Resumo:
Neutrophils are key components of the inflammatory response and as such contribute to the killing of microorganisms. In addition, recent evidence suggests their involvement in the development of the immune response. The role of neutrophils during the first weeks post-infection with Leishmania donovani was investigated in this study. When L. donovani-infected mice were selectively depleted of neutrophils with the NIMP-R14 monoclonal antibody, a significant increase in parasite numbers was observed in the spleen and bone marrow and to a lesser extent in the liver. Increased susceptibility was associated with enhanced splenomegally, a delay in the maturation of hepatic granulomas, and a decrease in inducible nitric oxide synthase expression within granulomas. In the spleen, neutrophil depletion was associated with a significant increase in interleukin 4 (IL-4) and IL-10 levels and reduced gamma interferon secretion by CD4(+) and CD8(+) T cells. Increased production of serum IL-4 and IL-10 and higher levels of Leishmania-specific immunoglobulin G1 (IgG1) versus IgG2a revealed the preferential induction of Th2 responses in neutrophil-depleted mice. Altogether, these data suggest a critical role for neutrophils in the early protective response against L. donovani, both as effector cells involved in the killing of the parasites and as significant players influencing the development of a protective Th1 immune response.
Resumo:
Activin A, a member of the TGFβ superfamily, is involved in physiological processes such as cell differentiation, tissue homeostasis, wound healing, reproduction, and in pathological conditions, such as fibrosis, cancer, and asthma. Activin enhances mast cell maturation, as well as regulatory T-cell and Langerhans cell differentiation. In this study we investigated the potential role of activin in epicutaneous sensitization with ovalbumin (OVA), notably with respect to its effect on known Th2-polarization. For this purpose, transgenic mice overexpressing activin in keratinocytes and their wild-type (WT) controls were sensitized epicutaneously with OVA. Skin biopsies were analyzed with regard to histopathological features and mRNA expression of pro-inflammatory and Th1/Th2 cytokines, and Ig levels were measured in the serum. Unexpectedly, activin overexpressing animals were protected from Th2-cytokine expression and induction of OVA-specific IgE levels compared to WT animals. On the other hand, transgenic mice were more susceptible to inflammation compared to WT littermates after tape-stripping and saline (vehicle) or OVA application, as shown by increased pro-inflammatory cytokine mRNA levels and neutrophil accumulation at the site of the treatment. We conclude that activin protects from antigen-induced cutaneous Th2-polarization through modulation of the immune response. These findings highlight the role of activin in cutaneous sensitization, allergy, and in skin homeostasis.
Resumo:
Congenital gonadotropin-releasing hormone (GnRH) deficiency manifests as absent or incomplete sexual maturation and infertility. Although the disease exhibits marked locus and allelic heterogeneity, with the causal mutations being both rare and private, one causal mutation in the prokineticin receptor, PROKR2 L173R, appears unusually prevalent among GnRH-deficient patients of diverse geographic and ethnic origins. To track the genetic ancestry of PROKR2 L173R, haplotype mapping was performed in 22 unrelated patients with GnRH deficiency carrying L173R and their 30 first-degree relatives. The mutation's age was estimated using a haplotype-decay model. Thirteen subjects were informative and in all of them the mutation was present on the same ~123 kb haplotype whose population frequency is ≤10%. Thus, PROKR2 L173R represents a founder mutation whose age is estimated at approximately 9000 years. Inheritance of PROKR2 L173R-associated GnRH deficiency was complex with highly variable penetrance among carriers, influenced by additional mutations in the other PROKR2 allele (recessive inheritance) or another gene (digenicity). The paradoxical identification of an ancient founder mutation that impairs reproduction has intriguing implications for the inheritance mechanisms of PROKR2 L173R-associated GnRH deficiency and for the relevant processes of evolutionary selection, including potential selective advantages of mutation carriers in genes affecting reproduction.
Resumo:
Primitive lymphatic vessels are remodeled into functionally specialized initial and collecting lymphatics during development. Lymphatic endothelial cell (LEC) junctions in initial lymphatics transform from a zipper-like to a button-like pattern during collecting vessel development, but what regulates this process is largely unknown. Angiopoietin 2 (Ang2) deficiency leads to abnormal lymphatic vessels. Here we found that an ANG2-blocking antibody inhibited embryonic lymphangiogenesis, whereas endothelium-specific ANG2 overexpression induced lymphatic hyperplasia. ANG2 inhibition blocked VE-cadherin phosphorylation at tyrosine residue 685 and the concomitant formation of button-like junctions in initial lymphatics. The defective junctions were associated with impaired lymph uptake. In collecting lymphatics, adherens junctions were disrupted, and the vessels leaked upon ANG2 blockade or gene deletion. ANG2 inhibition also suppressed the onset of lymphatic valve formation and subsequent valve maturation. These data identify ANG2 as the first essential regulator of the functionally important interendothelial cell-cell junctions that form during lymphatic development.
Resumo:
The interleukin-1 (IL-1) family of cytokines has been implicated in the pathogenesis of atherosclerosis in previous studies. The NLRP3 inflammasome has recently emerged as a pivotal regulator of IL-1β maturation and secretion by macrophages. Little is currently known about a possible role for the NLRP3 inflammasome in atherosclerosis progression in vivo. We generated ApoE-/- Nlrp3-/-, ApoE-/- Asc-/- and ApoE-/- caspase-1-/- double-deficient mice, fed them a high-fat diet for 11 weeks and subsequently assessed atherosclerosis progression and plaque phenotype. No differences in atherosclerosis progression, infiltration of plaques by macrophages, nor plaque stability and phenotype across the genotypes studied were found. Our results demonstrate that the NLRP3 inflammasome is not critically implicated in atherosclerosis progression in the ApoE mouse model.
Resumo:
Neuroinflammation is observed in many brain pathologies: in neurodegenerative diseases and multiple sclerosis as well as in chemically induced lesions. It is characterized by the reactivity of microglial cells and astrocytes, activation of inducible NO-synthase (i-NOS), and increased expression and/or release of cytokines and chemokines. Clearly, cell-to-cell signaling between the different brain cell types plays an important role in the initiation and propagation of neuroinflammation, but despite the growing list of known molecular actors, the underlying pathways and the sequence of events remain to be fully elucidated. The present chapter presents an example of how to assess neuroinflammation in complex brain tissues, using aggregating brain cell cultures as an in vitro model. This three-dimensional cell culture system provides optimal cell-to-cell interactions crucial for histotypic cellular maturation and control of neuroinflammatory processes. The techniques described here comprise immunocytochemistry to assess the reactivity of microglia and astrocytes and the expression of cytokines; quantitative RT-PCR to measure the mRNA expression of cytokines (TNF-α, IL-1β, IL-6, IL-1ra, TGF-β, IL-15, IFN-γ), chemokines (ccl5, cxcl1, cxcl2), and i-NOS; and immunoblotting to assess MAP kinase pathway activation (phosphorylation of p38 and p44/42 MAP kinases).
Resumo:
In the principal cell of the renal collecting duct, vasopressin regulates the expression of a gene network responsible for sodium and water reabsorption through the regulation of the water channel and the epithelial sodium channel (ENaC). We have recently identified a novel vasopressin-induced transcript (VIT32) that encodes for a 142 amino acid vasopressin-induced protein (VIP32), which has no homology with any protein of known function. The Xenopus oocyte expression system revealed two functions: (i) when injected alone, VIT32 cRNA rapidly induces oocyte meiotic maturation through the activation of the maturation promoting factor, the amphibian homolog of the universal M phase trigger Cdc2/cyclin; and (ii) when co-injected with the ENaC, VIT32 cRNA selectively downregulates channel activity, but not channel cell surface expression. In the kidney principal cell, VIP32 may be involved in the downregulation of transepithelial sodium transport observed within a few hours after vasopressin treatment. VIP32 belongs to a novel gene family ubiquitously expressed in oocyte and somatic cells that may be involved in G to M transition and cell cycling.
Resumo:
Spermatogenesis is a temporally regulated developmental process by which the gonadotropin-responsive somatic Sertoli and Leydig cells act interdependently to direct the maturation of the germinal cells. The metabolism of Sertoli and Leydig cells is regulated by the pituitary gonadotropins FSH and LH, which, in turn, activate adenylate cyclase. Because the cAMP-second messenger pathway is activated by FSH and LH, we postulated that the cAMP-responsive element-binding protein (CREB) plays a physiological role in Sertoli and Leydig cells, respectively. Immunocytochemical analyses of rat testicular sections show a remarkably high expression of CREB in the haploid round spermatids and, to some extent, in pachytene spermatocytes and Sertoli cells. Although most of the CREB antigen is detected in the nuclei, some CREB antigen is also present in the cytoplasm. Remarkably, the cytoplasmic CREB results from the translation of a unique alternatively spliced transcript of the CREB gene that incorporates an exon containing multiple stop codons inserted immediately up-stream of the exons encoding the DNA-binding domain of CREB. Thus, the RNA containing the alternatively spliced exon encodes a truncated transcriptional transactivator protein lacking both the DNA-binding domain and nuclear translocation signal of CREB. Most of the CREB transcripts detected in the germinal cells contain the alternatively spliced exon, suggesting a function of the exon to modulate the synthesis of CREB. In the Sertoli cells we observed a striking cyclical (12-day periodicity) increase in the levels of CREB mRNA that coincides with the splicing out of the restrictive exon containing the stop codons. Because earlier studies established that FSH-stimulated cAMP levels in Sertoli cells are also cyclical, and the CREB gene promoter contains cAMP-responsive enhancers, we suggest that the alternative RNA splicing controls a positive autoregulation of CREB gene expression mediated by cAMP.
Resumo:
Dendritic cells (DCs) are leukocytes specialised in the uptake, processing, and presentation of antigen and fundamental in regulating both innate and adaptive immune functions. They are mainly localised at the interface between body surfaces and the environment, continuously scrutinising incoming antigen for the potential threat it may represent to the organism. In the respiratory tract, DCs constitute a tightly enmeshed network, with the most prominent populations localised in the epithelium of the conducting airways and lung parenchyma. Their unique localisation enables them to continuously assess inhaled antigen, either inducing tolerance to inoffensive substances, or initiating immunity against a potentially harmful pathogen. This immunological homeostasis requires stringent control mechanisms to protect the vital and fragile gaseous exchange barrier from unrestrained and damaging inflammation, or an exaggerated immune response to an innocuous allergen, such as in allergic asthma. During DC activation, there is upregulation of co-stimulatory molecules and maturation markers, enabling DC to activate naïve T cells. This activation is accompanied by chemokine and cytokine release that not only serves to amplify innate immune response, but also determines the type of effector T cell population generated. An increasing body of recent literature provides evidence that different DC subpopulations, such as myeloid DC (mDC) and plasmacytoid DC (pDC) in the lungs occupy a key position at the crossroads between tolerance and immunity. This review aims to provide the clinician and researcher with a summary of the latest insights into DC-mediated pulmonary immune regulation and its relevance for developing novel therapeutic strategies for various disease conditions such as infection, asthma, COPD, and fibrotic lung disease.
Resumo:
Les inhibiteurs de la protéase du VIH (IP) constituent une des classes de traitements antirétroviraux parmi les plus utilisés au cours de l'infection par le VIH. Leur utilisation est associée à divers effets secondaires, notamment la dyslipidémie, la résistance à l'insuline, la lipodystrophie et certaines complications cardio-vasculaires. Ces molécules ont également des propriétés anti-tumorales, décrites chez des patients non infectés par le VIH. Pourtant, les mécanismes moléculaires à l'origine de ces effets annexes restent méconnus. Dans ce travail, nous démontrons que les IP, comme le Nelfinavir, le Ritonavir, le Lopinavir, le Saquinavir et l'Atazanavir, entrainent la production d'interleukine-lß (IL-lß), une puissante cytokine pro-inflammatoire, connue pour son rôle central dans les maladies inflammatoires. La sécrétion d'IL-lß requiert la formation de l'inflammasome, un complexe protéique intracellulaire servant de plateforme d'activation de la caspase-1 et, par la suite, à la maturation protéolytique de certaines cytokines, dont l'IL-lß. Dans les macrophages murins en culture primaire, ainsi que dans une lignée de monocytes humains, nous démontrons que les IP augmentent la maturation et la sécrétion de l'IL-lß via l'induction d'un inflammasome dépendant de ASC. De plus, nous établissons que les IP induisent spécifiquement l'activation de AIM2, un inflammasome détectant la présence intracytosolique d'ADN viral ou bactérien. Nos résultats démontrent l'existence d'une nouvelle voie d'activation de l'inflammasome AIM2 par un signal endogène dont la nature reste à définir. Ces données suggèrent que AIM2 pourrait jouer un rôle important dans la promotion de l'activité anti-tumorale ainsi que dans les autres effets annexes observés chez les patients traités par IP. -- HIV protease inhibitors (Pis) are among the most often used classes of antiretroviral drugs for HIV infection. Treatment of patients with HIV-PIs is associated with the development of metabolic side effects including dyslipidemia, insulin resistance, lipodystrophy and cardiovascular complications. In addition, these drugs have been reported to have anti¬tumoral properties in non-infected patients, however the molecular mechanisms causing these off-target effects are still unclear. Here we show that the HIV-PIs, such as Nelfinavir, Ritonavir, Lopinavir, Saquinavir and Atazanavir, activate the production of interleukin-lß (IL-lß), a potent pro-inflammatory cytokine that plays a central role in the pathogenesis of inflammatory diseases. The release of IL-lß depends on the activation of the inflammasome, a multiprotein complex that serves as a platform for caspase-1 activation and subsequent proteolytic maturation of cytokines including IL-lß. We found that in mouse primary macrophages as well as in a human monocytic cell line, the HIV-PIs augment the maturation and secretion of IL-lß by triggering an ASC-dependent inflammasome activation. Moreover, we show that the HIV-PIs specifically engage AIM2, a recently characterized inflammasome -forming protein that was described to detect the cytosolic release of bacterial and viral DNA. Our findings demonstrate a new pathway of activation of the AIM2 inflammasome by a yet to be defined endogenous signal and may suggest a possible role for AIM2 in promoting anti¬tumoral activity and off-target effects observed in HIV-PIs treated patients.
Resumo:
Résumé II y a cinq ans, la découverte d'un nouveau domaine, le PYD domaine, lié aux domaines de la mort, a permis la description de la nouvelle famille des NALP protéines. L'analyse structurelle de cette famille de protéines révéla la présence de deux autres domaines, impliqués dans l'oligomerisation, NACHT, et la détection des ligands, Leucine rich repeats ou LRR. Cette architecture protéique est homologue à celle qui est décrite pour les NODs, les Tol1 récepteurs et tes protéines de résistance chez les plantes. Cette homologie suggère une possible implication des NALPs dans la régulation de l'immunité innée. Premièrement, nous avons décrit les composants minimaux qui permettent à l'inflammasomeNALP3 d'activer la caspase pro-inflammatoire, caspase-1. En comparaison à NALP1, NALP3 ne contient pas de FIIND domaine, ni de CARD domaine en C-terminus et n'interagit pas avec caspase-5. Nous avons découvert une protéine très homologue au C-terminus de NALP1, Cardinal, qui se lie au NACHT domaine de NALP2 et NALP3 par l'intermédiaire de son FIIND domaine. Cardinal possède la capacité d'interagir avec caspase-l, mais seul ASC semble être nécessaire à la maturation de la prointerleukine-1β suite à la stimulation de NALP3. Deuxièmement, notre étude s'est concentrée sur la nature du stimulus capable d'induire la formation et l'activation de l'inflammasome-NALP3. Nous avons démontré que l'ajout de muramyl dipeptide (MDP), produit à partir de la digestion enzymatique de peptidoglycaris bactériens, induit à la fois l'expression de la proIL-1β par la voie NOD2 et sa maturation en IL-1β active par la voie NALP3. Bien que le MDP active l'inflammasome-NALP3, il est incapable d'induire la sécrétion de l'IL-1β mature dans la lignée cellulaire THP1, comparé aux monocytes primaires humains. Cette différence pourrait être liée à l'absence, dans les THP1, de la protéine Filamin, qui est proposée d'interagir avec Cardinal. L'implication de NALP3 dans la maturation de l'IL-lb est confirmée suite à la découverte de mutations sur le gène CIAS1/NALP3/cryopyrin associées à trois maladies auto-inflammatoires : le syndrome de Muckle-Wells (MWS), l'urticaire familial au froid (FCU) et le syndrome CINCA/NOMID. Une élévation constitutive de la maturation et de la sécrétion de la proIL-1β en absence de stimulation MDP est détectée dans les macrophages des patients Muckle-Wells. En conclusion, nos études ont démontré que l'inflammasome-NALP3 doit être finement régulé pour éviter une activité incontrôlée qui représente la base moléculaire des symptômes associés aux syndromes auto-inflammatoires liés à NALP3. Summary Five years ago, the description of the NALP family originated from the discovery of a new death-domain fold family, the PYD domain. NALP contains aprotein-protein interaction domain (PYD), an oligomerization domain (NACHT) and a ligand-sensing domain, leucine rich repeats or LRR. This protein architecture shares similarity with receptors involved in immunity, such as NODS, Toll receptors (TLRs) and related plant resistance proteins, and points to an important role of NALPs in defense mechanisms. We first described the minimal complex involved in the pro-inflammatory Interleukin-1beta (IL-1β) cytokine maturation, called the inflammasome, which contains NALP3. In contrast to NALP1, NALP3, like other members of the NALP family, is devoid of C-terminal FIIND and CARD domains and does not interact with the pro-inflammatory caspase-5. Interestingly, a homolog of the C-terminal portion of NALP1 was found in the human genome and was named Cardinal. We found that NALP2 and NALP3 interact with the CARD-containing proteins Cardinal. Cardinal is able to bind to caspase-1 but is not required for IL-1β maturation through NALP3 activation, as demonstrated for the adaptor ASC. Secondly, our study focused on the stimuli involved in the activation of the NALP3 inflammasome. MDP was shown to induce the expression of proIL1β through NOD2 and then the maturation into active IL-1β by activation of the NALP3 inflammasome. However, in the monocytic THP1 cell line, secretion of IL-1β upon MDP stimulation seems to be independent of the inflammasome activation compared to human primary monocytes. This difference might be linked to a Cardinal-interacting protein, filamin. Until now, the role of Cardinal and filamin is still unknown and remains to be elucidated. Finally, mutations in the NALP3/cryopyrin/CIAS1 gene are associated with three autoinflammatory diseases: Muckle-Wells syndrome, familial cold autoinflammatory syndrome, and CINCA. Constitutive, elevated IL-1β maturation and secretion, even in the absence of MDP stimulation, was observed in macrophages from Muckle-Wells patients and confirmed a key role for the NALP3 inflammasome in innate immunity In conclusion, our studies describes the formation of the NALP3 inflammasome and suggests that this complex has to be tightly regulated to avoid an increased deregulated inflammasome activity that is the molecular basis for the symptoms associated with NALP3-dependent autoinflammatory disorders.
Resumo:
Microtubule-associated protein 1b, previously also referred to as microtubule-associated protein 5 or microtubule-associated protein 1x, is a major component of the juvenile cytoskeleton, and is essential during the early differentiation of neurons. It is required for axonal growth and its function is influenced by phosphorylation. The distribution of microtubule-associated protein 1b in kitten cerebellum and cortex during postnatal development was studied with two monoclonal antibodies. Hybridoma clone AA6 detected a non-phosphorylated site, while clone 125 detected a site phosphorylated by casein-kinase II. On blots, both monoclonal antibodies stained the same two proteins of similar molecular weights, also referred to as microtubule-associated protein 5a and 5b. Antibody 125 detected a phosphorylated epitope on both microtubule-associated protein 1b forms; dephosphorylation by alkaline phosphatase abolished the immunological detection. During development of cat cortex and cerebellum, AA6 stained the perikarya and dendrites of neurons during their early differentiation, and especially labelled newly generated axons. The staining decreased during development, and axonal staining was reduced in adult tissue. In contrast to previous reports which demonstrated that antibodies against phosphorylated microtubule-associated protein 1b label exclusively axons, antibody 125 also localized microtubule-associated protein 1b in cell bodies and dendrites, even in adulthood. Some nuclear staining was observed, indicating that a phosphorylated form of microtubule-associated protein 1b may participate in nuclear function. These results demonstrate that microtubule-associated protein 1b is subject to CK2-type phosphorylation throughout neuronal maturation and suggest that phosphorylation of microtubule-associated protein 1b may participate in juvenile and mature-type microtubule functions throughout development.
Resumo:
B cell homeostasis has been shown to critically depend on BAFF, the B cell activation factor from the tumor necrosis factor (TNF) family. Although BAFF is already known to bind two receptors, BCMA and TACI, we have identified a third receptor for BAFF that we have termed BAFF-R. BAFF-R binding appears to be highly specific for BAFF, suggesting a unique role for this ligand-receptor interaction. Consistent with this, the BAFF-R locus is disrupted in A/WySnJ mice, which display a B cell phenotype qualitatively similar to that of the BAFF-deficient mice. Thus, BAFF-R appears to be the principal receptor for BAFF-mediated mature B cell survival.
Resumo:
Dendritic cells (DCs) are essential antigen-presenting cells for the induction of immunity against pathogens. However, HIV-1 spread is strongly enhanced in clusters of DCs and CD4(+) T cells. Uninfected DCs capture HIV-1 and mediate viral transfer to bystander CD4(+) T cells through a process termed trans-infection. Initial studies identified the C-type lectin DC-SIGN as the HIV-1 binding factor on DCs, which interacts with the viral envelope glycoproteins. Upon DC maturation, however, DC-SIGN is down-regulated, while HIV-1 capture and trans-infection is strongly enhanced via a glycoprotein-independent capture pathway that recognizes sialyllactose-containing membrane gangliosides. Here we show that the sialic acid-binding Ig-like lectin 1 (Siglec-1, CD169), which is highly expressed on mature DCs, specifically binds HIV-1 and vesicles carrying sialyllactose. Furthermore, Siglec-1 is essential for trans-infection by mature DCs. These findings identify Siglec-1 as a key factor for HIV-1 spread via infectious DC/T-cell synapses, highlighting a novel mechanism that mediates HIV-1 dissemination in activated tissues.