972 resultados para One-inclusion mistake bounds
Resumo:
Consider a sequence of closed, orientable surfaces of fixed genus g in a Riemannian manifold M with uniform upper bounds on the norm of mean curvature and area. We show that on passing to a subsequence, we can choose parametrisations of the surfaces by inclusion maps from a fixed surface of the same genus so that the distance functions corresponding to the pullback metrics converge to a pseudo-metric and the inclusion maps converge to a Lipschitz map. We show further that the limiting pseudo-metric has fractal dimension two. As a corollary, we obtain a purely geometric result. Namely, we show that bounds on the mean curvature, area and genus of a surface F subset of M, together with bounds on the geometry of M, give an upper bound on the diameter of F. Our proof is modelled on Gromov's compactness theorem for J-holomorphic curves.
Resumo:
Three one-dimensional zinc phosphates, [C5N2H14][Zn(HPO4)2], I, [C10N4H26][Zn(HPO4)2].2H2O II, and [C4N2H6]2[Zn(HPO4)], III, have been prepared employing hydro/solvothermal methods in the presence of organic amines. While I and II consist of linear chains of corner-shared four-membered rings, III is a polymeric wire where the amine molecule is directly bonded to the metal center. The wire, as well as the chain in these structures, are held together by hydrogen bond interactions involving the amine and the framework oxygens. The polymeric zinc phosphate with wire-like architecture, III, is only the second example of such architecture. Crystal data: I, monoclinic, P21/c (no. 14), a=8.603(2), b=13.529(2), c=10.880(1) Å, β=94.9(1)°, V=1261.6(1) Å3, Z=4, ρcalc.=1.893 gcm−3, μ(MoKα)=2.234 mm−1, R1=0.032, wR2=0.086, [1532 observed reflections with I>2σ(I)], II, orthorhombic, Pbca (no. 61), a=8.393(1), b=15.286(1), c=22.659(1) Å, V=2906.9(2) Å3, Z=8, ρcalc.=1.794 gcm−3, μ(MoKα)=1.957 mm−1, R1=0.055, wR2=0.11, [1565 observed reflections with I>2σ(I) and III, monoclinic, P21/c (no. 14), a=8.241(1), b=13.750(2), c=10.572(1) Å, β=90.9(1)°, V=1197.7(2) Å3, Z=4, ρcalc.=1.805 gcm−3, μ(MoKα)=2.197 mm−1, R1=0.036, wR2=0.10, [1423 observed reflections with I>2σ(I)].
Resumo:
We consider the problem of compression of a non-Abelian source.This is motivated by the problem of distributed function computation,where it is known that if one is only interested in computing a function of several sources, then one can often improve upon the compression rate required by the Slepian-Wolf bound. Let G be a non-Abelian group having center Z(G). We show here that it is impossible to compress a source with symbols drawn from G when Z(G) is trivial if one employs a homomorphic encoder and a typical-set decoder.We provide achievable upper bounds on the minimum rate required to compress a non-Abelian group with non-trivial center. Also, in a two source setting, we provide achievable upper bounds for compression of any non-Abelian group, using a non-homomorphic encoder.
Resumo:
The e�cient operation of single-source, single-sink wireless network is considered with the diversity-multiplexing gain tradeo� (DMT) as the measure of performance. Whereas in the case of a point-to-point MIMO channel the DMT is determined by the fading statistics, in the case of a network, the DMT is additionally, a function of the time schedule according to which the network is operated, as well as the protocol that dictates the mode of operation of the intermediate relays.In general, it is only possible at present, to provide upper bounds on the DMT of the network in terms of the DMT of the MIMO channel appearing across cuts in the network. This paper presents a tutorial overview on the DMT of half-duplex multi-hop wireless networks that also attempts to identify where possible, codes that achieve the DMT.For example, it is shown how one can construct codes that achieve the DMT of a network under a given schedule and either an amplify-and-forward or decode-and-forward protocol. Also contained in the paper,are discussions on the DMT of the multiple-access channel as well as the impact of feedback on the DMT of a MIMO channel.
Resumo:
Given two independent Poisson point processes ©(1);©(2) in Rd, the AB Poisson Boolean model is the graph with points of ©(1) as vertices and with edges between any pair of points for which the intersection of balls of radius 2r centred at these points contains at least one point of ©(2). This is a generalization of the AB percolation model on discrete lattices. We show the existence of percolation for all d ¸ 2 and derive bounds for a critical intensity. We also provide a characterization for this critical intensity when d = 2. To study the connectivity problem, we consider independent Poisson point processes of intensities n and cn in the unit cube. The AB random geometric graph is de¯ned as above but with balls of radius r. We derive a weak law result for the largest nearest neighbour distance and almost sure asymptotic bounds for the connectivity threshold.
Resumo:
This paper proposes a nonlinear voltage regulator with one tunable parameter for multimachine power systems. Based on output feedback linearization, this regulator can achieve simultaneous voltage regulation and small-signal performance objectives. Conventionally output feedback linearization has been used for voltage regulator design by taking infinite bus voltage as reference. Unfortunately, this controller has poor small-signal performance and cannot be applied to multimachine systems without the estimation of the equivalent external reactance seen from the generator. This paper proposes a voltage regulator design by redefining the rotor angle at each generator with respect to the secondary voltage of the step-up transformer as reference instead of a common synchronously rotating reference frame. Using synchronizing and damping torques analysis, we show that the proposed voltage regulator achieves simultaneous voltage regulation and damping performance over a range of system and operating conditions by controlling the relative angle between the generator internal voltage angle delta and the secondary voltage of the step up transformer. The performance of the proposed voltage regulator is evaluated on a single machine infinite bus system and two widely used multimachine test systems.
Resumo:
We consider single-source single-sink (ss-ss) multi-hop relay networks, with slow-fading links and single-antenna half-duplex relay nodes. While two-hop cooperative relay networks have been studied in great detail in terms of the diversity-multiplexing tradeoff (DMT), few results are available for more general networks. In this paper, we identify two families of networks that are multi-hop generalizations of the two-hop network: K-Parallel-Path (KPP)networks and layered networks.KPP networks, can be viewed as the union of K node-disjoint parallel relaying paths, each of length greater than one. KPP networks are then generalized to KPP(I) networks, which permit interference between paths and to KPP(D) networks, which possess a direct link from source to sink. We characterize the DMT of these families of networks completely for K > 3. Layered networks are networks comprising of layers of relays with edges existing only between adjacent layers, with more than one relay in each layer. We prove that a linear DMT between the maximum diversity dmax and the maximum multiplexing gain of 1 is achievable for single-antenna fully-connected layered networks. This is shown to be equal to the optimal DMT if the number of relaying layers is less than 4.For multiple-antenna KPP and layered networks, we provide an achievable DMT, which is significantly better than known lower bounds for half duplex networks.For arbitrary multi-terminal wireless networks with multiple source-sink pairs, the maximum achievable diversity is shown to be equal to the min-cut between the corresponding source and the sink, irrespective of whether the network has half-duplex or full-duplex relays. For arbitrary ss-ss single-antenna directed acyclic networks with full-duplex relays, we prove that a linear tradeoff between maximum diversity and maximum multiplexing gain is achievable.Along the way, we derive the optimal DMT of a generalized parallel channel and derive lower bounds for the DMT of triangular channel matrices, which are useful in DMT computation of various protocols. We also give alternative and often simpler proofs of several existing results and show that codes achieving full diversity on a MIMO Rayleigh fading channel achieve full diversity on arbitrary fading channels. All protocols in this paper are explicit and use only amplify-and-forward (AF) relaying. We also construct codes with short block-lengths based on cyclic division algebras that achieve the optimal DMT for all the proposed schemes.Two key implications of the results in the paper are that the half-duplex constraint does not entail any rate loss for a large class of cooperative networks and that simple AF protocols are often sufficient to attain the optimal DMT
Resumo:
Given an unweighted undirected or directed graph with n vertices, m edges and edge connectivity c, we present a new deterministic algorithm for edge splitting. Our algorithm splits-off any specified subset S of vertices satisfying standard conditions (even degree for the undirected case and in-degree ≥ out-degree for the directed case) while maintaining connectivity c for vertices outside S in Õ(m+nc2) time for an undirected graph and Õ(mc) time for a directed graph. This improves the current best deterministic time bounds due to Gabow [8], who splits-off a single vertex in Õ(nc2+m) time for an undirected graph and Õ(mc) time for a directed graph. Further, for appropriate ranges of n, c, |S| it improves the current best randomized bounds due to Benczúr and Karger [2], who split-off a single vertex in an undirected graph in Õ(n2) Monte Carlo time. We give two applications of our edge splitting algorithms. Our first application is a sub-quadratic (in n) algorithm to construct Edmonds' arborescences. A classical result of Edmonds [5] shows that an unweighted directed graph with c edge-disjoint paths from any particular vertex r to every other vertex has exactly c edge-disjoint arborescences rooted at r. For a c edge connected unweighted undirected graph, the same theorem holds on the digraph obtained by replacing each undirected edge by two directed edges, one in each direction. The current fastest construction of these arborescences by Gabow [7] takes Õ(n2c2) time. Our algorithm takes Õ(nc3+m) time for the undirected case and Õ(nc4+mc) time for the directed case. The second application of our splitting algorithm is a new Steiner edge connectivity algorithm for undirected graphs which matches the best known bound of Õ(nc2 + m) time due to Bhalgat et al [3]. Finally, our algorithm can also be viewed as an alternative proof for existential edge splitting theorems due to Lovász [9] and Mader [11].
Resumo:
We present two online algorithms for maintaining a topological order of a directed acyclic graph as arcs are added, and detecting a cycle when one is created. Our first algorithm takes O(m 1/2) amortized time per arc and our second algorithm takes O(n 2.5/m) amortized time per arc, where n is the number of vertices and m is the total number of arcs. For sparse graphs, our O(m 1/2) bound improves the best previous bound by a factor of logn and is tight to within a constant factor for a natural class of algorithms that includes all the existing ones. Our main insight is that the two-way search method of previous algorithms does not require an ordered search, but can be more general, allowing us to avoid the use of heaps (priority queues). Instead, the deterministic version of our algorithm uses (approximate) median-finding; the randomized version of our algorithm uses uniform random sampling. For dense graphs, our O(n 2.5/m) bound improves the best previously published bound by a factor of n 1/4 and a recent bound obtained independently of our work by a factor of logn. Our main insight is that graph search is wasteful when the graph is dense and can be avoided by searching the topological order space instead. Our algorithms extend to the maintenance of strong components, in the same asymptotic time bounds.
Resumo:
The non-H atoms of the title compound, C(11)H(6)BrFO(3), are essentially coplanar (r.m.s. deviation for all non-H atoms = 0.074 angstrom). In the crystal, the molecules are linked by C-H center dot center dot center dot O and C-H center dot center dot center dot Br interactions.
Resumo:
We derive bounds on leptonic double mass insertions of the type delta(l)(i4)delta(l)(4j) in four generational MSSM, using the present limits on l(i) -> l(j) + gamma. Two main features distinguish the rates of these processes in MSSM4 from MSSM3: (a) tan beta is restricted to be very small less than or similar to 3 and (b) the large masses for the fourth generation leptons. In spite of small tan beta, there is an enhancement in amplitudes with LLRR (4 delta(ll)(i4)delta(rr)(4j)) type insertions which pick up the mass of the fourth generation lepton, m(tau'). We find these bounds to be at least two orders of magnitude more stringent than those in MSSM3. (C) 2011 Elsevier B.V. All rights reserved.