940 resultados para Offshore electric power plants.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The paper describes a novel neural model to electrical load forecasting in transformers. The network acts as identifier of structural features to forecast process. So that output parameters can be estimated and generalized from an input parameter set. The model was trained and assessed through load data extracted from a Brazilian Electric Utility taking into account time, current, tension, active power in the three phases of the system. The results obtained in the simulations show that the developed technique can be used as an alternative tool to become more appropriate for planning of electric power systems.
Resumo:
The accurate identification of features of dynamical grounding systems are extremely important to define the operational safety and proper functioning of electric power systems. Several experimental tests and theoretical investigations have been carried out to obtain characteristics and parameters associated with the technique of grounding. The grounding system involves a lot of non-linear parameters. This paper describes a novel approach for mapping characteristics of dynamical grounding systems using artificial neural networks. The network acts as identifier of structural features of the grounding processes. So that output parameters can be estimated and generalized from an input parameter set. The results obtained by the network are compared with other approaches also used to model grounding systems.
Resumo:
Induction motors are largely used in several industry sectors. The selection of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this article is to use artificial neural networks for torque estimation with the purpose of best selecting the induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Since proposed approach estimates the torque behavior from the transient to the steady state, one of its main contributions is the potential to also be implemented in control schemes for real-time applications. Simulation results are also presented to validate the proposed approach.
Resumo:
Esse trabalho tem por objetivo o desenvolvimento de um sistema inteligente para detecção da queima no processo de retificação tangencial plana através da utilização de uma rede neural perceptron multi camadas, treinada para generalizar o processo e, conseqüentemente, obter o limiar de queima. em geral, a ocorrência da queima no processo de retificação pode ser detectada pelos parâmetros DPO e FKS. Porém esses parâmetros não são eficientes nas condições de usinagem usadas nesse trabalho. Os sinais de emissão acústica e potência elétrica do motor de acionamento do rebolo são variáveis de entrada e a variável de saída é a ocorrência da queima. No trabalho experimental, foram empregados um tipo de aço (ABNT 1045 temperado) e um tipo de rebolo denominado TARGA, modelo ART 3TG80.3 NVHB.
Resumo:
In this paper an alternative method based on artificial neural networks is presented to determine harmonic components in the load current of a single-phase electric power system with nonlinear loads, whose parameters can vary so much in reason of the loads characteristic behaviors as because of the human intervention. The first six components in the load current are determined using the information contained in the time-varying waveforms. The effectiveness of this method is verified by using it in a single-phase active power filter with selective compensation of the current drained by an AC controller. The proposed method is compared with the fast Fourier transform.
Resumo:
Fuel Cell is the emerging technology of cogeneration, and has been applied successfully in Japan, U.S.A. and some OECD countries. This system produces electric power by an electrolytic process, in which chemical substances (the most utilized substances are solid oxide, phosphoric acid and molten carbonate) absorb the components H-2 and O-2 of the combustion fuel. This technology allows the recovery of residual heat, available from 200 degrees C up to 1000 degrees C (depending on the electrochemical substance utilized), which can be used for the production of steam, hot or cold water, or hot or cold air, depending on the recuperation equipment used. This article presents some configurations of fuel cell cogeneration cycles and a study of the technical and economic feasibility for the installation of the cogeneration systems utilizing fuel cell, connected to an absorption refrigeration system for st building of the tertiary sector, subject to conditions in Brazil. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
This paper evaluates and quantifies the environmental impact resulting from the combination of biodiesel fuel (pure or blended with diesel), and diesel combustion in thermoelectric power plants that utilize combined cycle technology (CC). In regions without natural gas, the option was to utilize diesel fuel; the consequence would be a greater emission of pollutants. Biodiesel is a renewable fuel which has been considerably interesting in Brazil power matrix in recent years. The concept of ecological efficiency, largely evaluates the environmental impact caused by CO(2), SO(2), NO(x) and particle matter (PM) emissions. The pollution resulting from biodiesel and diesel combustion is analyzed, separately considering CO(2), SO(2), NO(x) and particulate matter gas emissions, and comparing them international standards currently used regarding air quality. It can be concluded that it is possible to calculate the qualitative environmental factor, and the ecological effect, from a thermoelectric power plant utilizing central heat power (CHP) of combined cycle. The ecological efficiency for pure biodiesel fuel (B100) is 98.16%; for biodiesel blended with conventional diesel fuel, B20 (20% biodiesel and 80% diesel) is 93.19%. Finally, ecological efficiency for conventional diesel is 92.18%, as long as a thermal efficiency of 55% for thermoelectric power plants occurs. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
Resumo:
Wood gasification technologies to convert the biomass into fuel gas stand out. on the other hand, producing electrical energy from stationary engine is widely spread, and its application in rural communities where the electrical network doesn't exist is very required. The recovery of exhaust gases (engine) is a possibility that makes the system attractive when compared with the same components used to obtain individual heat such as electric power. This paper presents an energetic alternative to adapt a fixed bed gasifier with a compact cogeneration system in order to cover electrical and thermal demands in a rural area and showing an energy solution for small social communities using renewable fuels. Therefore, an energetic and economical analysis from a cogeneration system producing electric energy, hot and cold water, using wooden gas as fuel from a small-sized gasifier was calculated. The energy balance that includes the energy efficiency (electric generation as well as hot and cold water system; performance coefficient and the heat exchanger, among other items), was calculated. Considering the annual interest rates and the amortization periods, the costs of production of electrical energy, hot and cold water were calculated, taking into account the investment, the operation and the maintenance cost of the equipments. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
Plasmas generated in de discharges in aromatic compounds have been used for several years in polymerization processes. The chemical kinetics developed in such a plasma environment are extremely complicated. Therefore it is extremely important to set up optical and electrical diagnostics in order to establish the kinetics of the film growth, In this work we studied de plasmas generated ill low-pressure atmospheres of benzene for different values of gas pressure and power coupled to the discharge. The pressure range varied from 0.2 to 1.0 mbar for electric power running from 4 to 25 W, the main chemical species observed within the discharge were CH, H and C. It was observed that the CH relative concentration increases continuously with the power in the range investigated. The electron temperature varied from 0.5 to 2.0 eV with the increase of the power, for a fixed value of gas pressure. The relative dielectric constant of the plasma polymerized benzene was kept around 4.8 from 100 Hz to 10 kHz, presenting a resonance near 25 kHz. This electric behaviour of the film was the same fur different conditions of polymeric film deposition, (C) 1997 Elsevier B.V. S.A.
Resumo:
The optimized allocation of protective devices in strategic points of the circuit improves the quality of the energy supply and the system reliability index. This paper presents a nonlinear integer programming (NLIP) model with binary variables, to deal with the problem of protective device allocation in the main feeder and all branches of an overhead distribution circuit, to improve the reliability index and to provide customers with service of high quality and reliability. The constraints considered in the problem take into account technical and economical limitations, such as coordination problems of serial protective devices, available equipment, the importance of the feeder and the circuit topology. The use of genetic algorithms (GAs) is proposed to solve this problem, using a binary representation that does (1) or does not (0) show allocation of protective devices (reclosers, sectionalizers and fuses) in predefined points of the circuit. Results are presented for a real circuit (134 busses), with the possibility of protective device allocation in 29 points. Also the ability of the algorithm in finding good solutions while improving significantly the indicators of reliability is shown. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This article presents a well-known interior point method (IPM) used to solve problems of linear programming that appear as sub-problems in the solution of the long-term transmission network expansion planning problem. The linear programming problem appears when the transportation model is used, and when there is the intention to solve the planning problem using a constructive heuristic algorithm (CHA), ora branch-and-bound algorithm. This paper shows the application of the IPM in a CHA. A good performance of the IPM was obtained, and then it can be used as tool inside algorithm, used to solve the planning problem. Illustrative tests are shown, using electrical systems known in the specialized literature. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Nonlinear load compensation required the definition of new concepts of electric power. With basis on these new concepts the nature of the stored energy stored in ideal inductors is theoreticaly characterized in this work. Computer simulation and theory agree when applied to an isolated alternator.
Resumo:
The paper presents a method for security control of electric power systems effected by generation reallocation, determined by sensitivity analysis and optimisation. The model is developed considering the dynamic aspects of the network (transient stability). Security control methodology is developed using sensitivity analysis of the security margin in relation to the mechanical power of synchronous machines in the system. The power reallocated to each machine is determined by means of linear programming. To illustrate the proposed methodology, an example is presented which considers a multimachine system composed of 10 synchronous machines, 45 buses, and 72 transmission lines, based on the configuration of a southern Brazilian system.
Resumo:
This work proposes a methodology to generalize the Y-connections for 12- and 18-pulse autotransformers. A single mathematical expression, obtained through simple trigonometric operations, represents all the connections. The proposed methodology allows choosing any ratio between the input and the output voltages. The converters can operate either as step-up or as step-down voltage. To simplify the design of the windings, graphics are generated to calculate the turn-ratio and the polarity of each secondary winding, with respect to the primary winding. A design example, followed by digital simulations, illustrates the presented steps. Experimental results of two prototypes (12 and 18 pulses) are presented. The results also show that high power factor is an inherent characteristic of multi-pulse converters, without any active or passive power factor pre-regulators needs. (c) 2005 Elsevier B.V. All rights reserved.