940 resultados para Offshore aquafarming
Resumo:
Site 1237 is located on Nazca Ridge ~140 km off the coast of Peru and thus within the offshore region of the Peru-Chile Current. A total of 83 samples were used to provide an initial radiolarian biostratigraphic framework for Site 1237; radiolarians are present to Sample 202-1237B-19H-2, 58-60 cm (186.45 meters composite depth [mcd]) and are of good to fair abundance and preservation. Site 1237 is influenced by both subtropical and northward-transported southern latitude waters, has 55 ash layers within the uppermost 166 m, and has minimal to gross reworking. Shipboard paleomagnetic results showed that the upper 200 m spanned the last 12 m.y., and in the upper 100 mcd, the paleomagnetic inclination pattern could be directly correlated to the geomagnetic polarity timescale (GPTS). Tropical biostratigraphy was used to establish the zonal boundaries for Site 1237, and the paleomagnetic and radiolarian stratigraphy were well correlated.
Resumo:
Bedding dips in the CRP-2A drillhole were determined in two ways (1) analysis of a dipmeter log, and (2) identification of bed boundaries on digital images of the outer core surface. The two methods document the downhole increase in structural dip, to a maximum of 15° in the lowest 150 m of the hole. Dipmeter data, which are azimuthally oriented, indicate a 75° azimuth for structural tilting, in agreement with seismic reflection profiles. Core and log dips indicate that structural dip increases by 5-7° between 325 and 480 mbsf. Both, however, also exhibit high dip inhomogeneity because of depositional (e.g., cross bedding) and post-depositional (e.g., softsediment deformation) processes. This variability adds ambiguity to the search for angular unconformities within the CRP-2A drillhole. Dip directions of different lithologies are generally similar, as are dip directions for the four kinds of systems tracts. Downdip azimuths of sands and muds are slightly different from those of diamicts, possibly reflecting the divergence between ENE offshore dip and ESE glacial advance.
Resumo:
The concentration and isotopic composition of Nd in water and particles collected in the western Mediterranean Sea are studied by two complementary approaches. The first examines local vertical profiles and time series; the second considers the global Nd budget of the whole western Mediterranean Sea. These two approaches are used to quantify the Nd inputs and the dissolved/particulate exchange processes in the water column. Two profiles of Nd in seawater in the Ligurian Sea taken in May and October 1992 show an average epsilon-Nd(0) = -9.6 ± 0.5. Seawater from the Strait of Sicily, representative of the eastern waters flowing into the western basin, is more radiogenic [epsilon-Nd(0) = -7.7 ± 0.6]. Profiles of particulate matter collected in sediment traps in coastal (Gulf of Lions) and offshore (Ligurian Sea) environments are also shown. Particles are enriched in Nd and are more radiogenic near the coast than offshore. Measurements of Nd concentration and epsilon-Nd(0) of external sources to the western Mediterranean Sea compared with the literature data demonstrate that particulate flux of atmospheric Saharan origin are more rich ([Nd] = 38 ± 10 µg/g) and less radiogenic [epsilon-Nd(0) = -13.0 ± 1.0] than riverine particulate discharge ([Nd] = 21.5 ± 4.4 µg/g; epsilon-Nd(0) = -10.1 ± 0.5), allowing to trace Nd particulate inputs in the water column. Nd atmospheric flux appears to be the major source into the whole western basin, although lateral advection of riverine material is the prevailing process in the coastal environment. Offshore, the vertical propagation of an important Saharan dust event has been recorded for two months in sediment traps at 80, 200 and 1000 m. The evolution of the resulting negative epsilon-Nd(0) peak along depth and time shows that the particles reach 200 m on a time scale of one week. For the first time, the Nd budget in the western Mediterranean basin is constrained by both concentrations and isotopic compositions measured in particles and seawater. Surface budget requires a remobilization of 30 ± 20% of particulate Nd input. In deep water, dissolved Nd concentrations are balanced by a scavenging of 10 ± 20% of the sinking particulate flux. On the other hand, the deep isotopic compositions suggest an exchange between 30 ± 20% of the sinking particles and the deep waters. The hypothesis of a non-stationary regime for the surface waters in the Ligurian Sea is also considered.
Resumo:
A new calibration database of census counts of organic-walled dinoflagellate cyst (dinocyst) assemblages has been developed from the analyses of surface sediment samples collected at middle to high latitudes of the Northern Hemisphere after standardisation of taxonomy and laboratory procedures. The database comprises 940 reference data points from the North Atlantic, Arctic and North Pacific oceans and their adjacent seas, including the Mediterranean Sea, as well as epicontinental environments such as the Estuary and Gulf of St. Lawrence, the Bering Sea and the Hudson Bay. The relative abundance of taxa was analysed to describe the distribution of assemblages. The best analogue technique was used for the reconstruction of Last Glacial Maximum (LGM) sea-surface temperature and salinity during summer and winter, in addition to sea-ice cover extent, at sites from the North Atlantic (n=63), Mediterranean Sea (n=1) and eastern North Pacific (n=1). Three of the North Atlantic cores, from the continental margin of eastern Canada, revealed a barren LGM interval, probably because of quasi-permanent sea ice. Six other cores from the Greenland and Norwegian seas were excluded from the compilation because of too sparse assemblages and poor analogue situation. At the remaining sites (n= 54), relatively close modern analogues were found for most LGM samples, which allowed reconstructions. The new LGM results are consistent with previous reconstructions based on dinocyst data, which show much cooler conditions than at present along the continental margins of Canada and Europe, but sharp gradients of increasing temperature offshore. The results also suggest low salinity and larger than present contrasts in seasonal temperatures with colder winters and more extensive sea-ice cover, whereas relatively warm conditions may have prevailed offshore in summer. From these data, we hypothesise low thermal inertia in a shallow and low-density surface water layer.
Resumo:
Siliciclastic sedimentation at Ocean Drilling Program Site 1017 on the southern slope of the Santa Lucia Bank, central California margin, responded closely to oceanographic and climatic change over the past ~130 ka. Variation in mean grain-size and sediment sorting within the ~25-m-thick succession from Hole 1017E show Milankovitch-band to submillenial-scale variation. Mean grain size of the "sortable silt" fraction (10-63 µm) ranges from 17.6 to 33.9 µm (average 24.8 µm) and is inversely correlated with the degree of sorting. Much of the sediment has a bimodal or trimodal grain-size distribution that is composed of distinct fine silt, coarse silt to fine sand, and clay-size components. The position of the mode and the sorting of each component changes through the succession, but the primary variation is in the presence or abundance of the coarse silt fraction that controls the overall mean grain size and sorting of the sample. The occurrence of the best-sorted, finest grained sediment at high stands of sea level (Holocene, marine isotope Substages 5c and 5e) reflect the linkage between global climate and the sedimentary record at Site 1017 and suggest that the efficiency of off-shelf transport is a key control of sedimentation on the Santa Lucia Slope. It is not clear what proportion of the variation in grain size and sorting may also be caused by variations in bottom current strength and in situ hydrodynamic sorting.
Resumo:
Deep-sea benthic foraminiferal assemblages from Ocean Drilling Program (ODP) Site 1143 located in the southern South China Sea (SCS) were investigated to evaluate the relationship between faunal composition patterns and paleoceanographic changes during the last 6 million years (late Miocene to Holocene). We used multivariate statistics (correspondence analysis) to analyze carbon-flux-related changes in assemblage composition of benthic foraminifers. Additional proxies for carbon flux and deep-water ventilation include delta13C records of epifaunal Cibicidoides wuellerstorfi and infaunal Uvigerina peregrina var. dirupta and Melonis pompilioides, benthic foraminiferal accumulation rates (BFARs), diversity indices, and relative abundances of indicator species. We observe three significant benthic faunal changes in the southern South China Sea during the last 6 million years. Strong fluctuations in BFAR and relative abundance of productivity indicator species between glacial and interglacial stages after the mid-Pleistocene revolution (MPR) at approximately 0.9 Ma, indicating stronger seasonal carbon flux fluctuations, are accompanied by the extinction of such species as Stilostomella spp. Increases in carbon flux indicator species are coupled with an overall decrease in benthic foraminifer diversity around 3.0 Ma in the late Pliocene. This may indicate increasing carbon flux in a period of productivity maximum caused by enhanced offshore upwelling from intensified winter monsoon wind strength.
Resumo:
The book is devoted to investigations of benthic fauna and geology of the Southern Atlantic Ocean. These works have been carried out in terms of exploring biological structure of the ocean and are of great importance for development of this fundamental problem. They are based on material collected during Cruise 43 of R/V Akademik Kurchatov in 1985-1986 and Cruise 43 of R/V Dmitry Mendeleev in 1989. Problems of quantitative distribution, group composition and trophic structure of benthos in the Southern Scotia Sea, along the east-west Transatlantic section along 31°30'S, and offshore Namibia in the area of the Benguela upwelling are under consideration in the book. Authors present new data on fauna of several groups of deep-sea bottom animals and their zoogeography. Much attention is paid to analysis of morphological structure of the Scotia Sea floor considered in terms of plate tectonics. Bottom sediments along the Transatlantic section and facial variation of sediments in the area of South Shetland Islands and of the continental margin of Namibia are under consideration.