968 resultados para Odorant Receptor Expression
Resumo:
Proteinase-activated receptor (PAR) type 2 (PAR-2) has been shown to mediate ion secretion in cultured epithelial cells and rat jejunum. With the use of a microUssing chamber, we demonstrate the role of PAR-2 for ion transport in native human colonic mucosa obtained from 30 normal individuals and 11 cystic fibrosis (CF) patients. Trypsin induced Cl- secretion when added to the basolateral but not luminal side of normal epithelia. Activation of Cl- secretion by trypsin was inhibited by indomethacin and was further increased by cAMP in normal tissues but was not present in CF colon, indicating the requirement of luminal CF transmembrane conductance regulator. Effects of trypsin were largely reduced by low Cl-,by basolateral bumetanide, and in the presence of barium or clotrimazole, but not by tetrodotoxin. Furthermore, trypsin-induced secretion was inhibited by the Ca2+-ATPase inhibitor cyclopiazonic acid and in low-Ca2+ buffer. The effects of trypsin were almost abolished by trypsin inhibitor. Thrombin, an activator of PAR types 1, 3, and 4, had no effects on equivalent short-circuit currents. The presence of PAR-2 in human colon epithelium was confirmed by RT-PCR and additional experiments with PAR-2-activating peptide. PAR-2-mediated intestinal electrolyte secretion by release of mast cell tryptase and potentiation of PAR-2 expression by tumor necrosis factor-alpha may contribute to the hypersecretion observed in inflammatory processes such as chronic inflammatory bowel disease.
Resumo:
Although the polyunsaturated fatty acids arachidonic acid (AA) and docosahexaenoic acid (DHA) are enriched in the olfactory mucosa, their possible contribution to olfactory transduction has not been investigated. This study characterized their effects on voltage-gated K+ and Na+ channels of rat olfactory receptor neurons. Physiological (3-10 mum) concentrations of AA and DHA potently and irreversibly inhibited the voltage-gated K+ current in a voltage-independent manner. In addition, both compounds significantly reduced the inhibitory potency of the odorants acetophenone and amyl acetate at these channels. By comparison, the steady-state effects of both AA and DHA on the voltage-gated Na+ channel were relatively weak, with half-maximal inhibition requiring approximate to 35 mum of either compound. However, a surprising finding was that the initial application of 3 mum AA to a naive neuron caused a strong but transient inhibition of the Na+ current. The channels became almost completely resistant to this inhibition within 1 min, and a 2-min wash in control solution was insufficient to restore the strong inhibitory effect. These observations suggest that polyunsaturated fatty acids have the potential to strongly influence the coding of odorant information by olfactory receptor neurons.
Resumo:
The distributions of the Eph-class receptors EphA4 and EphB 1, and their ligands ephrin-A2, ephrin-B1, and ephrin-B2, were analysed by immunostaining in the mouse inner ear. Complementary patterns of EphA4 and its potential ligand ephrin-A2 were found, with ephrin-A2 in many of the structures lining the cochlear duct and within the cochlear nerve cells, and EphA4 in the deeper structures underlying the cochlear duct and in the cells lining the nerve pathway. EphB1 and its potential ligands ephrin-B1 and ephrin-B2 showed a segregated layered expression in the lateral wall of the cochlear duct (the external sulcus), which together with EphA4 expressed in the area, form a four-layered structure with an alternating pattern of receptors and ligands in the different layers. This arrangement gives the potential for different bidirectional Eph-mediated interactions between each of the layers. The results suggest that the Eph system in the cochlea may have a role in maintaining cell segregation during phases of cochlear development. (C) 2002 Wiley-Liss, Inc.
Resumo:
In the present survey, we identified most of the genes involved in the receptor tyrosine kinase (RTK), mitogen activated protein kinase (MAPK) and Notch signaling pathways in the draft genome sequence of Ciona intestinalis, a basal chordate. Compared to vertebrates, most of the genes found in the Ciona genome had fewer paralogues, although several genes including ephrin, Eph and fringe appeared to have multiplied or duplicated independently in the ascidian genome. In contrast, some genes including kit/flt, PDGF and Trk receptor tyrosine kinases were not found in the present survey, suggesting that these genes are innovations in the vertebrate lineage or lost in the ascidian lineage. The gene set identified in the present analysis provides an insight into genes for the RTK, MAPK and Notch signaling pathways in the ancient chordate genome and thereby how chordates evolved these signaling pathway.
Resumo:
The mechanisms involved in angiotensin II type 1 receptor (AT(1)-R) trafficking and membrane localization are largely unknown. In this study, we examined the role of caveolin in these processes. Electron microscopy of plasma membrane sheets shows that the AT(1)-R is not concentrated in caveolae but is clustered in cholesterol-independent microdomains; upon activation, it partially redistributes to lipid rafts. Despite the lack of AT(1)-R in caveolae, AT(1)-R. caveolin complexes are readily detectable in cells co-expressing both proteins. This interaction requires an intact caveolin scaffolding domain because mutant caveolins that lack a functional caveolin scaffolding domain do not interact with AT(1)-R. Expression of an N-terminally truncated caveolin-3, CavDGV, that localizes to lipid bodies, or a point mutant, Cav3-P104L, that accumulates in the Golgi mislocalizes AT(1)-R to lipid bodies and Golgi, respectively. Mislocalization results in aberrant maturation and surface expression of AT(1)-R, effects that are not reversed by supplementing cells with cholesterol. Similarly mutation of aromatic residues in the caveolin-binding site abrogates AT(1)-R cell surface expression. In cells lacking caveolin-1 or caveolin-3, AT(1)-R does not traffic to the cell surface unless caveolin is ectopically expressed. This observation is recapitulated in caveolin-1 null mice that have a 55% reduction in renal AT(1)-R levels compared with controls. Taken together our results indicate that a direct interaction with caveolin is required to traffic the AT(1)-R through the exocytic pathway, but this does not result in AT(1)-R sequestration in caveolae. Caveolin therefore acts as a molecular chaperone rather than a plasma membrane scaffold for AT(1)-R.
Resumo:
The N-methyl-D-aspartate (NMDA)-selective subtype of ionotropic glutamate receptor is of importance in neuronal differentiation and synapse consolidation, activity-dependent forms of synaptic plasticity, and excitatory amino acid-mediated neuronal toxicity [Neurosci. Res. Program, Bull. 19 (1981) 1; Lab. Invest. 68 (1993) 372]. NMDA receptors exist in vivo as tetrameric or pentameric complexes comprising proteins from two families of homologous subunits, designated NR1 and NR2(A-D) [Biochem. Biophys. Res. Commun. 185 (1992) 826]. The gene coding for the human NR1 subunit (hNR1) is composed of 21 exons, three of which (4, 20 and 21) can be differentially spliced to generate a total of eight distinct subunit variants. We detail here a competitive RT-PCR (cRT-PCR) protocol to quantify endogenous levels of hNR1 splice variants in autopsied human brain. Quantitation of each hNR1 splice variant is performed using standard curve methodology in which a known amount of synthetic ribonucleic acid competitor (internal standard) is co-amplified against total RNA. This method can be used for the quantitation of hNR1 mRNA levels in response to acute or chronic disease states, in particular in the glutamatergic-associated neuronal loss observed in Alzheimer's disease [J. Neurochem. 78 (2001) 175]. Furthermore, alterations in hNR1 mRNA expression may be reflected at the translational level, resulting in functional changes in the NMDA receptor. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
We have developed a competitive RT-PCR assay, adapted from Lewohl et al. [Brain Res. Brain Res. Protoc. 1 (1997) 347]. for the quantitation of GABA, receptor beta isoforms in human brain using an internal standard that shares high sequence homology to the targets. The internal standard is identical to the beta(1) sequence except for a 61 bp deletion and the incorporation of a Hind III restriction enzyme site. Unlike traditional competitive RT-PCR, which requires a range of internal standard concentrations to be titrated against a constant amount of unknown, this method relies on a standard curve for quantitation of each sample and thus permits increased sample throughput. This method is suitable for the quantitation of beta(1), beta(2) and beta(3) isoforms of the GABA(A) receptor in human alcoholic and control brain. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
In the toothless (tl/tl) osteopetrotic rat, teeth form but fail to erupt. Treatment of tl/tl rats with colony-stimulating factor-1 (CSF-1) activates bone resorption by osteoclasts, permits tooth eruption, and up-regulates the immunoreactivity of bone marrow mononuclear cells to growth hormone receptor (GHr) and insulin-like growth factor (IGF)-I. This study examined the distribution of tartrate-resistant acid phosphatase (TRAP) and immunoreactivity for GHr and IGF-I in osteoclast-like cells located on the alveolar bone margin, adjacent to the lower first molar crown, in 14-day-old normal and tl/tl rats, following treatment with CSF-1. Osteoclast-like cells demonstrated a positive reaction for TRAP, GHr, and IGF-I in all groups. However, in tl/tl tissue, osteoclast-like cells were generally negative for GHr. There was no significant difference in the total number of TRAP, GHr, and IGF-I-positive osteoclast-like cells on the adjacent bone margin in normal, normal treated with CSF-1, and tl/tl rats. CSF-1 treatment of the tl/tl rat significantly increased the total number of osteoclast-like cells, which were positive for TRAP (p < 0.001), GHr (p < 0.05) and IGF-I (P < 0.01).
Resumo:
WT1 encodes a transcription factor involved in kidney development and tumorigenesis. Using representational difference analysis, we identified a new set of WT1 targets, including a homologue of the Drosophila receptor tyrosine kinase regulator, sprouty. Sprouty1 was up-regulated in cell lines expressing wild-type but not mutant WT1. WT1 bound to the endogenous sprouty1 promoter in vivo and directly regulated sprouty1 through an early growth response gene-1 binding site. Expression of Sprouty1 and WT1 overlapped in the developing metanephric mesenchyme, and Sprouty1, like WT1, plays a key role in the early steps of glomerulus formation. Disruption of Sprouty1 expression in embryonic kidney explants by antisense oligonucleotides reduced condensation of the metanephric mesenchyme, leading to a decreased number of glomeruli. In addition, sprouty1 was expressed in the ureteric tree and antisense-treated ureteric trees had cystic lumens. Therefore, sprouty1 represents a physiologically relevant target gene of WT1 during kidney development.
Resumo:
Recent population studies have demonstrated an association with the red-hair and fair-skin phenotype with variant alleles of the melanocortin-1 receptor (MC1R) which result in amino acid substitutions within the coding region leading to an altered receptor activity. In particular, Arg151Cys, Arg160Trp and Asp294His were the most commonly associated variants seen in the south-east Queensland population with at least one of these alleles found in 93% of those with red hair. In order to study the individual effects of these variants on melanocyte biology and melanocytic pigmentation, we established a series of human melanocyte strains genotyped for the MC1R receptor which included wild-type consensus, variant heterozygotes, compound heterozygotes and homozygotes for Arg151Cys, Arg160Trp, Val60Leu and Val92Met alleles. These strains ranged from darkly pigmented to amelanotic, with all strains of consensus sequence having dark pigmentation. UV sensitivity was found not to be associated with either MC1R genotype or the level of pigmentation with a range of sensitivities seen across all genotypes. Ultrastructural analysis demonstrated that while consensus strains contained stage IV melanosomes in their terminal dendrites, Arg151Cys and Arg160Trp homozygote strains contained only stage II melanosomes. This was despite being able to show expression of tyrosinase and tyrosinase-related protein-1 markers, although at reduced levels and an ability to convert exogenous 3,4-dihydroxyphenyl-alanine (DOPA) to melanin in these strains.
Resumo:
Fatty acids inhibit insulin-mediated glucose metabolism in skeletal muscle, an effect largely attributed to defects in insulin-mediated glucose transport. Insulin-resistant mice transgenic for the overexpression of lipoprotein lipase (LPL) in skeletal muscle were used to examine the molecular mechanism(s) in more detail. Using DNA gene chip array technology, and confirmation by RT-PCR and Western analysis, increases in the yeast Sec1p homolog Munc18c mRNA and protein were found in the gastrocnemius muscle of transgenic mice, but not other tissues. Munc18c has been previously demonstrated to impair insulin-mediated glucose transport in mammalian cells in vitro. Of interest, stably transfected C2C12 cells overexpressing LPL not only demonstrated increases in Munc18c mRNA and protein but also in transcription rates of the Munc18c gene. jlr To confirm the relevance of fatty acid metabolism and insulin resistance to the expression of Munc18c in vivo, a 2-fold increase in Munc18c protein was demonstrated in mice fed a high-fat diet for 4 weeks. Together, these data are the first to implicate in vivo increases in Munc18c as a potential contributing mechanism to fatty acid-induced insulin resistance.
Resumo:
We report a novel activating mutation (E604K) of the calcium-sensing receptor in a family with autosomal dominant hypocalcemia. Whereas all affected individuals exhibited marked hypocalcemia, some cases with untreated hypocalcemia exhibited seizures in infancy, whereas others were largely asymptomatic from birth into adulthood. The missense mutation E604K (G2182A, GenBank accession no. U20759), which affects an amino acid residue in the C terminus of the cysteine-rich domain of the extracellular head, co-segregated with hypocalcemia in all seven individuals for whom DNA was available. Two unaffected, normocalcemic members of the family did not exhibit the mutation. The molecular impact of the mutation on two key components of the signaling response was assessed in HEK-293 cells transiently transfected with cDNA corresponding to either the wild-type calcium-sensing receptor or the E604K mutation derived by site-directed mutagenesis. There was a significant leftward shift in the concentration response curves for the effects of extracellular Ca2+ on both intracellular Ca2+ mobilization (determined by aequorin luminescence) and MAPK activity (determined by luciferase expression). The C terminus of the cysteine-rich domain of the extracellular head may normally act to suppress receptor activity in the presence of low extracellular Ca2+ concentrations.
Resumo:
Levels of expression of mRNAs encoding the different Ephs and ephrins were measured by semi-quantitative reverse-transcription polymerase chain reaction in developing mouse whole inner ears, and in dissected fractions of the neonatal mouse inner ear. Nineteen of the 24 known Ephs and ephrins were surveyed. The results showed that between embryonic age (E) 11.5 days and E12.5, levels increased 10-300 times per unit of tissue. In neonatal mice, the fraction containing combined organ of Corti and spiral ganglion showed relatively strong expression of EphA4, EphB3, ephrin-A3, ephrin-B2 and ephrin-B3. In the lateral wall, EphA4, ephrin-A3 and ephrin-B2 were strongly expressed, while ephrin-A3 was particularly strongly expressed in utricular and saccular sensory epithelia. The results suggest that the Ephs and ephrins are likely to play a part in the differentiation of the structures of the inner ear, and show which Ephs and ephrins are most likely to play important roles in the different structures. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
In the rodent central nervous system (CNS) during the five days prior to birth, both growth hormone (GH) and its receptor (GHR) undergo transient increases in expression to levels considerably higher than those found postnatally. This increase in expression coincides with the period of neuronal programmed cell death (PCD) in the developing CNS. To evaluate the involvement of growth hormone in the process of PCD, we have quantified the number of motoneurons in the spinal cord and brain stem of wild type and littermate GHR-deficient mice at the beginning and end of the neuronal PCD period. We found no change in motoneuron survival in either the brachial or lumbar lateral motor columns of the spinal cord or in the trochlear, trigeminal, facial or hypoglossal nuclei in the brain stem. We also found no significant differences in spinal cord volume, muscle fiber diameter, or body weight of GHR-deficient fetal mice when compared to their littermate controls. Therefore, despite considerable in vitro evidence for GH action on neurons and glia, genetic disruption of GHR signalling has no effect on prenatal motoneuron number in the mouse, under normal physiological conditions. This may be a result of compensation by the signalling of other neurotrophic cytokines.