957 resultados para OZONE EXPOSURE
Resumo:
The effects of elevated CO2 on leaf development in three genotypes of Populus were investigated during canopy closure, following exposure to elevated CO2 over 3 yr using free-air enrichment.• Leaf quality was altered such that nitrogen concentration per unit d. wt (Nmass) declined on average by 22 and 13% for sun and shade leaves, respectively, in elevated CO2. There was little evidence that this was the result of ‘dilution’ following accumulation of nonstructural carbohydrates. Most likely, this was the result of increased leaf thickness. Specific leaf area declined in elevated CO2 on average by 29 and 5% for sun and shade leaves, respectively.• Autumnal senescence was delayed in elevated CO2 with a 10% increase in the number of days at which 50% leaf loss occurred in elevated as compared with ambient CO2.• These data suggest that changes in leaf quality may be predicted following long-term acclimation of fast-growing forest trees to elevated CO2, and that canopy longevity may increase, with important implications for forest productivity.
Resumo:
Phthalates are industrial additives widely used as plasticizers. In addition to deleterious effects on male genital development, population studies have documented correlations between phthalates exposure and impacts on reproductive tract development and on the metabolic syndrome in male adults. In this work we investigated potential mechanisms underlying the impact of DEHP on adult mouse liver in vivo. A parallel analysis of hepatic transcript and metabolic profiles from adult mice exposed to varying DEHP doses was performed. Hepatic genes modulated by DEHP are predominantly PPARalpha targets. However, the induction of prototypic cytochrome P450 genes strongly supports the activation of additional NR pathways, including Constitutive Androstane Receptor (CAR). Integration of transcriptomic and metabonomic profiles revealed a correlation between the impacts of DEHP on genes and metabolites related to heme synthesis and to the Rev-erbalpha pathway that senses endogenous heme level. We further confirmed the combined impact of DEHP on the hepatic expression of Alas1, a critical enzyme in heme synthesis and on the expression of Rev-erbalpha target genes involved in the cellular clock and in energy metabolism. This work shows that DEHP interferes with hepatic CAR and Rev-erbalpha pathways which are both involved in the control of metabolism. The identification of these new hepatic pathways targeted by DEHP could contribute to metabolic and endocrine disruption associated with phthalate exposure. Gene expression profiles performed on microdissected testis territories displayed a differential responsiveness to DEHP. Altogether, this suggests that impacts of DEHP on adult organs, including testis, could be documented and deserve further investigations.
Integrated cytokine and metabolic analysis of pathological responses to parasite exposure in rodents
Resumo:
Parasitic infections cause a myriad of responses in their mammalian hosts, on immune as well as on metabolic level. A multiplex panel of cytokines and metabolites derived from four parasite-rodent models, namely, Plasmodium berghei-mouse, Trypanosoma brucei brucei-mouse, Schistosoma mansoni-mouse, and Fasciola hepatica-rat were statistically coanalyzed. 1H NMR spectroscopy and multivariate statistical analysis were used to characterize the urine and plasma metabolite profiles in infected and noninfected animals. Each parasite generated a unique metabolic signature in the host. Plasma cytokine concentrations were obtained using the ‘Meso Scale Discovery’ multi cytokine assay platform. Multivariate data integration methods were subsequently used to elucidate the component of the metabolic signature which is associated with inflammation and to determine specific metabolic correlates with parasite-induced changes in plasma cytokine levels. For example, the relative levels of acetyl glycoproteins extracted from the plasma metabolite profile in the P. berghei-infected mice were statistically correlated with IFN-γ, whereas the same cytokine was anticorrelated with glucose levels. Both the metabolic and the cytokine data showed a similar spatial distribution in principal component analysis scores plots constructed for the combined murine data, with samples from all infected animals clustering according to the parasite species and whereby the protozoan infections (P. berghei and T. b. brucei) grouped separately from the helminth infection (S. mansoni). For S. mansoni, the main infection-responsive cytokines were IL-4 and IL-5, which covaried with lactate, choline, and D-3-hydroxybutyrate. This study demonstrates that the inherently differential immune response to single and multicellular parasites not only manifests in the cytokine expression, but also consequently imprints on the metabolic signature, and calls for in-depth analysis to further explore direct links between immune features and biochemical pathways.
Resumo:
Posttraumatic stress disorder (PTSD) is reported to be caused by exposure to traumatic events including (but not limited to) military combat, violent personal assault, being kidnapped or taken hostage and terrorist attacks. Initial data suggest that at least 1 out of 6 Iraq War veterans are exhibiting symptoms of depression, anxiety and PTSD. Virtual reality (VR) delivered exposure therapy for PTSD has been used with reports of positive outcomes. The aim of the current paper, is to present the rationale and brief description of a Virtual Iraq/Afghanistan PTSD VR therapy application and present initial findings from its use with PTSD patients. Thus far, Virtual Iraq/Afghanistan consists of a series of customizable virtual scenarios designed to represent relevant Middle Eastern VR contexts for exposure therapy, including a city and desert road convoy environment. User-centered design feedback, needed to iteratively evolve the system, was gathered from returning Iraq War veterans in the USA and from a system deployed in Iraq and tested by an Army Combat Stress Control Team. Results from an open clinical trial at San Diego Naval Medical Center of the first 20 treatment completers indicate that 16 no longer met PTSD screening criteria at post-treatment, with only one not maintaining treatment gains at 3 month follow-up.
Resistance as a factor in environmental exposure of anticoagulant rodenticides: a modelling approach
Resumo:
Anticoagulant rodenticide (AR) resistance in Norway rat populations has been a problem for fifty years, however its impact on non-target species, particularly predatory and scavenging animals has received little attention. Field trials were conducted on farms in Germany and England where resistance to anticoagulant rodenticides had been confirmed. Resistance is conferred by different mutations of the VKORC1 gene in each of these regions: tyrosine139cysteine in Germany and leucine120glutamine in England. A modelling approach was used to study the transference of the anticoagulants into the environment during treatments for Norway rat control. Baiting with brodifacoum resulted in lower levels of AR entering the food chain via the rats and lower numbers of live rats carrying residues during and after the trials due to its lower application rate and efficacy against resistant rats. Bromadiolone and difenacoum resulted in markedly higher levels of AR uptake into the rat population and larger numbers of live rats carrying residues during the trials and for long periods after the baiting period. Neither bromadiolone nor difenacoum provided full control on any of the treated farms. In resistant areas where ineffective compounds are used there is the potential for higher levels of AR exposure to non-target animals, particularly predators of rats and scavengers of rat carcasses. Thus, resistance influences the total amount of AR available to non-targets and should be considered when dealing with rat infestations, as resistance-breakers may present a lower risk to wildlife.
Resumo:
The reduction in southern midlatitude ozone is quantified by evaluating the trajectories of ozone-depleted air masses, assuming that photochemical recovery of ozone in advected air parcels can be ignored. This procedure is carried out for the 3 months from 15 October to 15 January for each of the years 1998, 1999, and 2000. Two distinct source regions, the vortex core and the vortex edge, are considered, and for each day, diabatic reverse domain filling calculations are performed for an ensemble of parcels between 30°S and 60°S and 400–700 K in altitude. In 1998, 1999, and 2000 the mean calculated ozone reduction is 16, 18, and 19 DU, respectively. Air parcels from the vortex edge region are significant contributors to the reduction, especially during spring. Results for four longitudinal and three latitudinal midlatitude subregions are also presented. A comparison with the Total Ozone Mapping Spectrometer measurements of total column ozone shows that without the dilution, ozone over Southern Hemisphere midlatitudes would be 5–6% higher during spring and summer. This result is probably an overestimate due to the neglect of photochemical recovery.
Resumo:
Objectives: The use of triclosan within various environments has been linked to the development of multiple drug resistance (MDR) through the increased expression of efflux pumps such as AcrAB-ToIC. In this work, we investigate the effect of triclosan exposure in order to ascertain the response of two species to the presence of this widely used biocide. Methods: The transcriptomes of Salmonella enterica serovar Typhimurium SL1344 and Escherichia coli K-12 MG1655 after exposure to the MIC of triclosan (0.12 mg/L) were determined in microarray experiments. Phenotypic validation of the transcriptomic data included RT-PCR, ability to form a biofilm and motility assays. Results: Despite important differences in the triclosan-dependent transcriptomes of the two species, increased expression of efflux pump component genes was seen in both. Increased expression of soxS was observed in Salmonella Typhimurium, however, within E. coli, decreased expression was seen. Expression of fabBAGI in Salmonella Typhimurium was decreased, whereas in E. coli expression of fabABFH was increased. Increased expression of ompR and genes within this regulon (e.g. ompC, csgD and ssrA) was seen in the transcriptome of Salmonella Typhimurium. An unexpected response of E. coli was the differential expression of genes within operons involved in iron homeostasis; these included fhu, fep and ent. Conclusions: These data indicate that whilst a core response to triclosan exposure exists, the differential transcriptome of each species was different. This suggests that E. coli K-12 should not be considered the paradigm for the Enterobacteriaceae when exploring the effects of antimicrobial agents.
Resumo:
In previous work, Salmonella enterica serovar Typhimurium strain SL1344 was exposed to sublethal concentrations of three widely used farm disinfectants in daily serial passages for 7 days in an attempt to investigate possible links between the use of disinfectants and antimicrobial resistance. Stable variants OXCR1, QACFGR2, and TOPR2 were obtained following treatment with an oxidizing compound blend, a quaternary ammonium disinfectant containing formaldehyde and glutaraldehyde, and a tar acid-based disinfectant, respectively. All variants exhibited ca. fourfold-reduced susceptibility to ciprofloxacin, chloramphenicol, tetracycline, and ampicillin. This coincided with reduced levels of outer membrane proteins for all strains and high levels of AcrAB-To1C for OXCR1 and QACFGR2, as demonstrated by two-dimensional high-performance liquid chromatography-mass spectrometry. The protein profiles of OXCR1 and QACFGR2 were similar, but they were different from that of TOPR2. An array of different proteins protecting against oxidants, nitroaromatics, disulfides, and peroxides were overexpressed in all strains. The growth and motility of variants were reduced compared to the growth and motility of the parent strain, the expression of several virulence proteins was altered, and the invasiveness in an enteric epithelial cell line was reduced. The colony morphology of OXCR1 and QACFGR2 was smooth, and both variants exhibited a loss of modal distribution of the lipopolysaccharide O-antigen chain length, favoring the production of short O-antigen chain molecules. Metabolic changes were also detected, suggesting that there was increased protein synthesis and a shift from oxidative phosphorylation to substrate level phosphorylation. In this study, we obtained evidence that farm disinfectants can select for strains with reduced susceptibility to antibiotics, and here we describe changes in protein expression in such strains.
Resumo:
An ongoing debate on second language (L2) processing revolves around whether or not L2 learners process syntactic information similarly to monolinguals (L1), and what factors lead to a native-like processing. According to the Shallow Structure Hypothesis (Clahsen & Felser, 2006a), L2 learners’ processing does not include abstract syntactic features, such as intermediate gaps of wh-movement, but relies more on lexical/semantic information. Other researchers have suggested that naturalistic L2 exposure can lead to native-like processing (Dussias, 2003). This study investigates the effect of naturalistic exposure in processing wh-dependencies. Twenty-six advanced Greek learners of L2 English with an average nine years of naturalistic exposure, 30 with classroom exposure, and 30 native speakers of English completed a self-paced reading task with sentences involving intermediate gaps. L2 learners with naturalistic exposure showed evidence of native-like processing of the intermediate gaps, suggesting that linguistic immersion can lead to native-like abstract syntactic processing in the L2.
Resumo:
The separate effects of ozone depleting substances (ODSs) and greenhouse gases (GHGs) on forcing circulation changes in the Southern Hemisphere extratropical troposphere are investigated using a version of the Canadian Middle Atmosphere Model (CMAM) that is coupled to an ocean. Circulation-related diagnostics include zonal wind, tropopause pressure, Hadley cell width, jet location, annular mode index, precipitation, wave drag, and eddy fluxes of momentum and heat. As expected, the tropospheric response to the ODS forcing occurs primarily in austral summer, with past (1960-99) and future (2000-99) trends of opposite sign, while the GHG forcing produces more seasonally uniform trends with the same sign in the past and future. In summer the ODS forcing dominates past trends in all diagnostics, while the two forcings contribute nearly equally but oppositely to future trends. The ODS forcing produces a past surface temperature response consisting of cooling over eastern Antarctica, and is the dominant driver of past summertime surface temperature changes when the model is constrained by observed sea surface temperatures. For all diagnostics, the response to the ODS and GHG forcings is additive: that is, the linear trend computed from the simulations using the combined forcings equals (within statistical uncertainty) the sum of the linear trends from the simulations using the two separate forcings. Space time spectra of eddy fluxes and the spatial distribution of transient wave drag are examined to assess the viability of several recently proposed mechanisms for the observed poleward shift in the tropospheric jet.
Resumo:
In the past several decades, the tropospheric westerly winds in the Southern Hemisphere have been observed to accelerate on the poleward side of the surface wind maximum. This has been attributed to the combined anthropogenic effects of increasing greenhouse gases and decreasing stratospheric ozone and is predicted to continue by the Intergovernmental Panel on Climate Change/Fourth Assessment Report (IPCC/AR4) models. In this paper, the predictions of the Chemistry-Climate Model Validation (CCMVal) models are examined: Unlike the AR4 models, the CCMVal models have a fully interactive stratospheric chemistry. Owing to the expected disappearance of the ozone hole in the first half of the 21st century, the CCMVal models predict that the tropospheric westerlies in Southern Hemisphere summer will be decelerated, on the poleward side, in contrast with the prediction of most IPCC/AR4 models.
Resumo:
Multiple exposures have been shown to increase preference for novel foods or flavours. This "mere exposure" effect is also well known anecdotally for changes in preference for tastants within foods, for example reducing sugar in tea or coffee. However, to date, this phenomenon has received little scientific attention. The present study addressed this issue in relation to changes in preference for salt within soup. Following an initial assessment of liking, familiarity and saltiness of six soups varying in salt content (0 - 337 mg NaCl/ml), thirty-seven participants, previously assessed for their preferred salt level in soup, were allocated to either an exposure group that received 20 ml soup samples with no added salt, to a group that received a 280 ml bowl of this soup, or to a control group that received 20 ml soup samples containing salt at 280mg/100g (within normal, commercial range). Soups were presented on eight occasions, at approximately daily intervals. The two groups receiving the no added salt soup showed increases in liking starting at the third exposure, and also evident in a repeat assessment following the exposures. Increases in familiarity of the no added salt soup were also evident during exposure. Rated saltiness of all soups increased as a function of exposure, so a change in saltiness perception could not account for changes in liking for just the no added salt soups. These data suggest that simple exposure to the taste of the no added salt soup was sufficient to increase liking to a level equivalent to the initially more preferred salt level.
Resumo:
Listeria monocytogenes is a psychrotrophic food-borne pathogen that is problematic for the food industry because of its ubiquitous distribution in nature and its ability to grow at low temperatures and in the presence of high salt concentrations. Here we demonstrate that the process of adaptation to low temperature after cold shock includes elevated levels of cold shock proteins (CSPs) and that the levels of CSPs are also elevated after treatment with high hydrostatic pressure (HHP). Two-dimensional gel electrophoresis combined with Western blotting performed with anti-CspB of Bacillus subtilis was used to identify four 7-kDa proteins, designated Csp1, Csp2, Csp3, and Csp4. In addition, Southern blotting revealed four chromosomal DNA fragments that reacted with a csp probe, which also indicated that a CSP family is present in L. monocytogenes LO28. After a cold shock in which the temperature was decreased from 37°C to 10°C the levels of Csp1 and Csp3 increased 10- and 3.5-fold, respectively, but the levels of Csp2 and Csp4 were not elevated. Pressurization of L. monocytogenes LO28 cells resulted in 3.5- and 2-fold increases in the levels of Csp1 and Csp2, respectively. Strikingly, the level of survival after pressurization of cold-shocked cells was 100-fold higher than that of cells growing exponentially at 37°C. These findings imply that cold-shocked cells are protected from HHP treatment, which may affect the efficiency of combined preservation techniques.
Resumo:
The aim of the present work is to study the occupants' exposure to fine particulate concentrations in ten nightclubs (NCs) in Athens, Greece. Measurements of PM1 and PM 2.5 were made in the outdoor and indoor environment of each NC. The average indoorPM1 andPM 2.5 concentrations were found to be 181.77 μgm−3 and 454.08 μg m−3 respectively, while the corresponding outdoor values were 11.04 μg m−3 and 32.19 μg m−3. Ventilation and resuspension rates were estimated through consecutive numerical experiments with an indoor air quality model and were found to be remarkably lower than the minimum values recommended by national standards. The relative effects of the ventilation and smoking on the occupants' exposures were examined using multiple regression techniques. Itwas found that given the low ventilation rates, the effect of smoking as well as the occupancy is of the highest importance. Numerical evaluations showed that if the ventilation rates were at the minimum values set by national standards, then the indoor exposures would be reduced at the 70% of the present exposure values.