992 resultados para OVERDENSE PLASMAS
Resumo:
Accurate fine-structure atomic data for the Fe-peak elements are essential for interpreting astronomical spectra. There is a severe paucity of data available for Sc II, highlighted by the fact that no collision strengths are readily available for this ion. We present electron-impact excitation collision strengths and Maxwellian averaged effective collision strengths for Sc II. The collision strengths were calculated for all 3916 transitions amongst 89 jj levels (arising from the 3d4s, 3d2, 4s2, 3d4p, 4s4p, 3d5s, 3d4d, 3d5p, 4p2 and 3d4f configurations), resulting in a 944 coupled channel problem. The R-matrix package RMATRXII was utilized, along with the transformation code FINE and the external region code PSTGF, to calculate the collision strengths for a range of incident electron energies in the 0 to 8.3 Rydberg region. Maxwellian averaged effective collision strengths were then produced for 27 temperatures lying within the astrophysically significant range of 30 to 105 K.
The collision strengths and effective collision strengths were produced for two different target models. The purpose was to systematically examine the effect of including open 3p correlation terms into the configuration interaction expansion for the wavefunction. The first model consisted of all 36 CI terms that could be generated with the 3p core closed. The second model incorporated an additional six configurations which allowed for single-electron excitations from within the 3p core. Comparisons are made between the two models and the results of Bautista et al., obtained by private communication. It is concluded that the first model produced the most reliable set of collision and effective collision strengths for use in astrophysical and plasma applications.
Resumo:
A theoretical and numerical study of fast electron transport in solid and compressed fast ignition relevant targets is presented. The principal aim of the study is to assess how localized increases in the target density (e. g., by engineering of the density profile) can enhance magnetic field generation and thus pinching of the fast electron beam through reducing the rate of temperature rise. The extent to which this might benefit fast ignition is discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729322]
Resumo:
A series of numerical simulations is presented, based on a recurrence-free Vlasov kinetic model using kinetic phase point trajectories. All plasma components are modeled kinetically via a Vlasov evolution equation, then coupled through Poisson’s equation. The dynamics of ion acoustic waves in an electron-ion and in a dusty (electron-ion-dust) plasma configuration are investigated, focusing on wave decay due to Landau damping and, in particular, on the parametric dependence of the damping rate on the dust concentration and on the electron-to-ion temperature ratio. In the absence of dust, the occurrence of damping was observed, as expected, and its dependence to the relative magnitude of the electron vs ion temperature(s) was investigated. When present, the dust component influences the charge balance, enabling dust-ion acoustic waves to survive Landau damping even in the extreme regime where Te???Ti. The Landau damping rate is shown to be minimized for a strong dust concentration or/and for a high value of the electron-to-ion temperature ratio. Our results confirm earlier theoretical considerations and contribute to the interpretation of experimental observations of dust-ion acoustic wave characteristics.
Resumo:
The nonlinear dynamics of electron-acoustic localized structures in a collisionless and unmagnetized plasma consisting of “cool” inertial electrons, “hot” electrons having a kappa distribution, and stationary ions is studied. The inertialess hot electron distribution thus has a long-tailed suprathermal (non-Maxwellian) form. A dispersion relation is derived for linear electron-acoustic waves. They show a strong dependence of the charge screening mechanism on excess suprathermality (through ?). A nonlinear pseudopotential technique is employed to investigate the occurrence of stationary-profile solitary waves, focusing on how their characteristics depend on the spectral index ?, and the hot-to-cool electron temperature and density ratios. Only negative polarity solitary waves are found to exist, in a parameter region which becomes narrower as deviation from the Maxwellian (suprathermality) increases, while the soliton amplitude at fixed soliton speed increases. However, for a constant value of the true Mach number, the amplitude decreases for decreasing ?.
Resumo:
A generalized linear theory for electromagnetic waves in a homogeneous dusty magnetoplasma is presented. The waves described are characterized by a frequency which is much smaller (larger) than the electron gyrofrequency (dust plasma and dust gyrofrequencies), and a long wavelength (in comparison with the ion gyroradius and the electron skin depth). The generalized Hall- magnetohydrodynamic (GH-MHD) equations are derived by assuming massive charged dust macroparticles to be immobile, and Fourier transformed to obtain a general dispersion relation. The latter is analyzed to understand the influence of immobile charged dust grains on various electromagnetic wave modes in a magnetized dusty plasma.
Resumo:
A dust crystal consisting of charged dust grains of alternating charge sign (.../+/-/+/-/+/...) and mass is considered. Considering the equations of longitudinal motion, a linear dispersion relation is derived from first principles, and then analyzed. Two modes are obtained, including an acoustic mode and an inverse-dispersive optic-like one. The nonlinear aspects of longitudinal dust grain motion are also briefly addressed, via a Boussineq and Korteweg- de Vries description.
Resumo:
Proton bursts with a narrow spectrum at an energy of (2.8 +/- 0.3 MeV) are accelerated from sub-micron water spray droplets irradiated by high-intensity (similar to 5 x 10(19)W/cm(2)), high-contrast (similar to 10(10)), ultra-short (40 fs) laser pulses. The acceleration is preferentially in the laser propagation direction. The explosion dynamics is governed by a residual ps-scale laser pulse pedestal which "mildly" preheats the droplet and changes its density profile before the arrival of the high intensity laser pulse peak. As a result, the energetic electrons extracted from the modified target by the high-intensity part of the laser pulse establish an anisotropic electrostatic field which results in anisotropic Coulomb explosion and proton acceleration predominantly in the forward direction. Hydrodynamic simulations of the target pre-expansion and 3D particle-in-cell simulations of the measured energy and anisotropy of the proton emission have confirmed the proposed acceleration scenario. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731712]
Resumo:
We experimentally demonstrate a new regime of high-order harmonic generation by relativistic-irradiance lasers in gas jet targets. Bright harmonics with both odd and even orders, generated by linearly as well as circularly polarized pulses, are emitted in the forward direction, while the base harmonic frequency is downshifted. A 9 TW laser generates harmonics up to 360 eV, within the 'water window' spectral region. With a 120 TW laser producing 40 uJ/sr per harmonic at 120 eV, we demonstrate the photon number scalability. The observed harmonics cannot be explained by previously suggested scenarios. A novel high-order harmonics generation mechanism [T. Zh. Esirkepov et al., AIP Proceedings, this volume], which explains our experimental findings, is based on the phenomena inherent in the relativistic laser - underdense plasma interactions (self-focusing, cavity evacuation, and bow wave generation), mathematical catastrophe theory which explains formation of electron density singularities (cusps), and collective radiation due to nonlinear oscillations of a compact charge.
Resumo:
We propose a new mechanism of high-order harmonic generation during an interaction of a high-intensity laser pulse with underdense plasma. A tightly focused laser pulse creates a cavity in plasma pushing electrons aside and exciting the wake wave and the bow wave. At the joint of the cavity wall and the bow wave boundary, an annular spike of electron density is formed. This spike surrounds the cavity and moves together with the laser pulse. Collective motion of electrons in the spike driven by the laser field generates high-order harmonics. A strong localization of the electron spike, its robustness to oscillations imposed by the laser field and, consequently, its ability to produce high-order harmonics is explained by catastrophe theory. The proposed mechanism explains the experimental observations of high-order harmonics with the 9 TW J-KAREN laser (JAEA, Japan) and the 120 TW Astra Gemini laser (CLF RAL, UK) [A. S. Pirozhkov, et al., arXiv:1004.4514 (2010); A. S. Pirozhkov et al, AIP Proceedings, this volume]. The theory is corroborated by high-resolution two- and three-dimensional particle-in-cell simulations.
Resumo:
Bacteria exist, in most environments, as complex, organised communities of sessile cells embedded within a matrix of self-produced, hydrated extracellular polymeric substances known as biofilms. Bacterial biofilms represent a ubiquitous and predominant cause of both chronic infections and infections associated with the use of indwelling medical devices such as catheters and prostheses. Such infections typically exhibit significantly enhanced tolerance to antimicrobial, biocidal and immunological challenge. This renders them difficult, sometimes impossible, to treat using conventional chemotherapeutic agents. Effective alternative approaches for prevention and eradication of biofilm associated chronic and device-associated infections are therefore urgently required. Atmospheric pressure non-thermal plasmas are gaining increasing attention as a potential approach for the eradication and control of bacterial infection and contamination. To date, however, the majority of studies have been conducted with reference to planktonic bacteria and rather less attention has been directed towards bacteria in the biofilm mode of growth. In this study, the activity of a kilohertz-driven atmospheric pressure non-thermal plasma jet, operated in a helium oxygen mixture, against Pseudomonas aeruginosa in vitro biofilms was evaluated. Pseudomonas aeruginosa biofilms exhibit marked susceptibility to exposure of the plasma jet effluent, following even relatively short (~10's s) exposure times. Manipulation of plasma operating conditions, for example, plasma operating frequency, had a significant effect on the bacterial inactivation rate. Survival curves exhibit a rapid decline in the number of surviving cells in the first 60 seconds followed by slower rate of cell number reduction. Excellent anti-biofilm activity of the plasma jet was also demonstrated by both confocal scanning laser microscopy and metabolism of the tetrazolium salt, XTT, a measure of bactericidal activity.